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Introduction 
 

The objective of this work was declared as «Investigation of regularities of formation of 

microstructure of ceramic in-situ composites by the methods of computer modeling with the aim to 

optimize their physico-chemical properties and correspondent service characteristics». This final report is 

to illustrate how we achieved the above said goal. Let’s emphasize that this objective should be 

considered with two essential limitations. The first comes from a title of the project – this work considered 

only DSEC for systems LaB6 – MeB2 (Me-Ti, Zr, Hf) and basic physico-chemical processes (i.e. at this 

stage the composites are considered not as a material for final products but as a material - sample, 

material-prototype) were investigated for those systems. The second one falls from Proposal wording that 

this work is completely a pioneer one. That is why the work carried out should be considered as only the 

first steps towards the above said objective but not as accomplished research. 

Conceptual part of this report mainly presents the results obtained by project team followed by our 

comments about similar problems highlighted in literature and formulate problems needed to be solved in 

the near future to achieve the above said “big” declared objective. During three years our team worked out 

more than 20 monographs and 400 papers with key words «directed solidification, eutectics, boride-boride 

composites, computer modeling». Participation in the workshops on directed crystallization held in 

Cleveland (USA), Kyoto (Japan), Saint Luis (USA), Seville (Spain), as well as materials science 

international conferences hosting correspondent sections enabled us a possibility to collect the information 

providing a rather complete understanding of this problem in the world and the results obtained. We are 

not going to list all references but only those needed for this report. 

First of all we would like to remind that the objects of our investigation are boride-boride 

composites of the systems LaB6 – MeB2 (Me-Ti, Zr, Hf) obtained by the technology of directed 

solidification. In the Proposal we indicated that directed solidified «in-situ» composites with ceramic matrix 

were developed in Frantsevich Institute for Problems in Materials Science NAS of Ukraine [1]-[8]. 1982 

year can be considered as a reference point for production of the first samples and the first paper [1] was 

published in 1983. English version of this paper came to light in 1990 [2]. In this work we would not raise a 

question of priority the above is only to highlight a solid scientific contacts with a technical laboratory highly 

experienced in growing of investigated composites. For a long time this laboratory had been headed by 

Dr. Yu. B. Paderno. Now, Dr. V.Filipov, his PhD student, who supervises a parallel project Р276, heads it 

and our teams work together hand by hand. 

The investigations were carried out at macro-, meso and micro scales and each scale is considered 

in own section. 

1. Experiment 
 Currently the investigation of peculiarities of processes and growing of single crystals of borides of 

rare earth metals is performed by a few labs of the world - Japan, USA, Germany, Russia, Ukraine, and 

the methods of zone melting is used only in IPMS NASU and some labs of Japan. A number of 
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laboratories involved in experimental investigations of physical properties of these materials, is constantly 

growing all over the world, and all of those are interested in samples required for their research. 

 The Laboratory of Refractory Compounds of IPMS NASU (Dr. V.B. Filipov) is a vanguard from this 

stand point, the technologies of growth of boride single crystals with coherent character of melting 

developed in this lab are rather competitive and in some cases are better than those available in other 

countries [9, 10]. 

 Samples produced in this laboratory are widely investigated in joint works with leading laboratories 

all over the world (USA, France, Germany, Poland, Slovakia, Israel, Russia, Switzerland, Italy, etc.). 

 In the Laboratory a process of directed solidification was carried out on special device «Crystal-

111» for zone melting of refractory compounds, which was designed in Saint Petersburg according to 

IPMS technical assignment. 

 A speed of rods movement and rotation makes 18 mm/min and 30 rot/min respectively. The 

installation (see fig. 1.1) provided an opportunity of investigation of the process of directed solidification of 

a wide class of composite materials and to develop optimum technological parameters of the process. Arc 

melting was carried out by means of standard arc furnaces. 

 
Fig 1.1 – General view of modernized installation „Crystal 111”, designed for zone melting of 

refractory compounds 
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Thus experimental data of our research are based on investigation of samples of directed solidified boride 

eutectics obtained according to a scheme below (see fig. 1.2). 

 

DSEC 
 

- Polycrystal feeding rod of eutectic composition 

 

- Growth can be initiated on specifically oriented crystal 

 

- Growth rates are usually found in a range 3-16 mm/min 

 

- Variants of heating mechanism 

- Focused irradiation 

- Resistive heaters 

 

- Controlled inert environment 

 

Feeding rod 

Ellipsoid mirror 

Halogen lamp 

Melting zone 

Crystal 

Inoculating rod 

Controlled environment 

Quartz tube 

а) installation scheme 
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Growth direction

Orientation of 
microstructure 

с) growth direction 

b) photo of melt zone 

 

Fig. 1.2. Scheme of production of samples of directed solidified boride-boride eutectics 

 

Let’s illustrate a number of electron microscope images of model samples of the investigated systems 

(see fig.1.3). 

    
a)    b)    c) 

Fig. 1.3 Dependence of structure of composite LaB6-ZrB2 vs crystallization rate mm/min: a – 3, b – 5, c - 

10 

It should be noted that a problem of reliable experimental data required for computer modeling at all 

(macro, meso and micro) structural scales was the biggest problem in this work. 

Calculations at macro scale required the following data: 

Definition of the main physical parameters 

Т0 – initial temperature, К; 

  in moving coordinates,  - temperature of crystallization К; 1 cT T cT

0c  - concentration of fibers;  

v  - pulling rate of composite, m/sec; 

  - density of melt, kg/m3; 

lc - specific heat capacity of melt, Joule/kg К; 

q  - specific heat of melting, Joule/kg; 
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  - coefficient of melt heat conductivity, Wt/m К or Joule/sec m К; 

  - surface energy of interface , Joule/m2; A B

a  - temperature conductivity, m2/sec. 

 
Data interval for LaB6-ZrB2 
1. CONCENTRATION 

According to [11] compositions of alloys and melting temperature for LaB6-MeB2 are available in Table 

1.1: 

Table 1.1 Alloys compositions and melting temperatures of eutectic alloys LaB6-MeB2 

% МеВ2 in eutectic 
Boride phase  Тmelting, К 

Mass  Vol. Mol 

TiB2 3250 15* 16 34 

ZrB2 3310 20 16 32 

HfB2 3620 30 16 30 

 
2. VELOCITY 

According to Dr. Filipov’s data a velocity of eutectic solidification for the system LaB6-ZrB2 makes 

V=(0-0,833)*10-4 m/sec or V=0-5 mm/min. 

 

3. MELT DENSITY  
At room temperature from [11] 

ρ TiB2 = 4 520 kg/m3 

ρ ZrB2 =6 090 kg/m3 

ρ HfB2 =11 200 kg/m3 

ρ LaB6 =4 730 kg/m3 

 
Let’s define melt’s density using the following ratio: 

кр
ж

кр
ж V

V
   

V кр – substance volume in crystal state; 

V ж – substance volume in liquid state; 

Dr. Filipov reports that a shrinkage hole of solidified sample makes approx. 10%. 
 
4. HEAT CONDUCTION 
At room temperature from [11] 
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λ TiB2 = 64,5 Wt/m К 

λ ZrB2 = 58,2 Wt/m К 

λ HfB2 = 51,1 Wt/m К 

λ LaB6 = 47,7 Wt/m К 

We calculate a heat conduction using a rule of mixtures for LaB6-MeB2 

 
5. SPECIFIC HEAT CAPACITY 
At room temperature from [11] 

lc  TiB2 = 636 Joule/kg К 

lc  ZrB2 = 445 Joule/kg К 

lc  HfB2 = 249 Joule/kg К 

lc  LaB6 = 572 Joule/kg К 

We calculate a specific heat capacity using a rule of mixtures for composite 

 
6. SURFACE ENERGY 
For calculations we used characteristics of mechanical properties of eutectic alloys LaB6 - МеB2, available 

in table 1.2. 

 

Table 1.2 Characteristics of mechanical properties of eutectic alloys LaB6 - МеB2  

Material 
Bending Strength 

изг, MPa 

Fracture toughness) 

К1С, MPa·m1/2 

LaB6 - ZrB2 1000...1320 15,2…18,3 

LaB6 - HfB2 1150...1250 11,0...14,4 

LaB6 - TiB2 388...656 15,2...16,5 

 
From Griffith criteria we define a surface energy [13]: 

с

Е
ГР 

 2
          (1.1) 

where 

ГР  - critical stress for crack development under load at plane stressed state; 

 с – crack’s length; 

 Е – Young’s modulus; 

  - surface energy. 

ГР  is found out from a ratio to define fracture toughness К1С, namely: сK ГРC 1 , where с – 

admissible crack’s size . 
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с

К С
ГР 

 1          (1.2) 

Substituting (2) into (1) we obtain an expression for surface energy: 

E

K C

2

2
1         (1.3) 

Young’s modules values for the investigated alloys are borrowed from [14]. 

E(TiB2) = 540, 53 GPa; E(ZrB2) = 495, 8 GPa; E(HfB2) = 479,71 GPa; E(LaB6) = 478,73 GPa 

Experimental values of Young’s modulus along fiber (given by Dr. V. Filipov) for LaB6-ZrB2 = 420 GPa. 

By formula (1.3): 

= 
 4202

122

0,170
9

12

10

10
Pa= 170 Joule/m2 

 

8. SPECIFIC HEAT OF MELTING 
For borides there are neither experimental nor reference data. 

According to [13] specific heat of melting for solid bodies in found in interval (24,7 – 266) KJoule/kg. 

To investigate structure of fracture surface and microstructure of interfaces «fiber-matrix» required 

a package of images (obtained by scanning electron microscopy of rather high resolution) for the problems 

highlighted in the working schedule. However, unfortunately, these images were not submitted by project 

coordinator and thus the developed methodology of processing of electron-microscopy images by the 

methods of fractal geometry were tested and «adjusted» on images, which were borrowed from existing 

publications and those, which were kindly presented by our colleagues from IPMS NASU (but it were 

another objects). 

The most favorable situation with experimental data was at microscale modeling. Here the required 

atomic constants and structure of the investigated systems are available in crystallographic literature. 

It should be noted that issues of correctness of initial data for numerical experiment had been 

constantly discussed with Dr. Ali Sayir, scientific coordinator of this project (NASA Glenn Center, the 

USA). At present he developed a scheme of joint works of laboratories participating in “Big International 

Project” (the USA, France, Ukraine) to obtain experimental data required to proceed with computer 

modeling of the above said problems. 

 

 

2. MACROSCALE. MODELING OF TECHNOLOGICAL PROCESS OF DIRECTED 

SOLIDIFICATION OF COMPOSITES OF EUTECTIC SYSTEMS LAB6-MEB2 

 

At growth of single crystals from melt thermal conditions essentially influence on processes of 

crystals growth and quality. These conditions, first of all, are defined by crystals form and sizes, character 

and intensity of heat removal from external surfaces of a crystal, character and intensity of heat exchange 

in melt, velocity of elongation and heat-physical properties of solid and liquid phases. At crystallization 
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from multicomponent systems thermal conditions are also affected by diffusion processes in melt and 

change of temperature on interface depending on components concentration. 

Thermal conditions, in their turn, define a form of crystallization front, growth rate and temperature 

gradients on interfaces as well as thermal stresses in crystals during growth. Knowledge of these 

parameters is required for production of perfect single crystals, both in macro- and micro-scales. 

Now to obtain single crystals from melt different methods of directed solidification are employed 

[15,16]. The most known methods are the methods of Kiropulosa [17] and Tchohralsky [18] where 

crystallization occurs from top to down, and the methods of Stokbarger [19] and Shtobera [20] where it is 

carried out from below upwards. In all these methods heat removal is made, mainly, through the hardened 

crystal and a temperature field in a crystal has, as it is possible to believe, axial symmetry. Thus the front 

of crystallization is not always plane, and represents, in macroscopic scales, a surface of rotation from a 

variable on radius the curvature changing in due course. Usually distinguish the plane, convex and 

concave form of front of crystallization though in practice of cultivation of single crystals there can be found 

rather difficult cases. 

As it is found out [21,22], the most favorable for a growth of single crystals is a plane and convex 

form of crystallization front whereas at concave front an origin of parasitic germs on a lateral surface of a 

crystal is quite possible and an opportunity of thinning of boundaries between twins or blocks with big 

angular disorientation that promotes polycrystal growth is absent. 

On the other hand, the existence of plane front of crystallization at all stages of growth is associated 

with uniform heat removal from a crystal on its face surface, uniform heat exchange in melt on front of 

crystallization and absence of a lateral heat removal whereas a presence of appreciable lateral heat-

removal aspires to give to crystallization front a concave form. Therefore the analysis of influence of 

thermal conditions on the form of crystallization front represents, undoubtedly a big interest. 

The problem of definition of a law of promotion of crystallization front in temperature fields associated 

with it now is solved only for bodies of elementary form [23]: semi-planes [24,25], spheres [26], cylinder 

[27,28], paraboloid of revolution [29] and ellipsoid of revolution [30]. For fibrous composites being an 

object of investigation of this work as far as a literature review showed this problem has not been put as of 

yet. Therefore the problem of modeling of promotion of crystallization front in technology of directed 

crystallization of composites of systems LaB6-MeB2-(Me-Ti, Zr, Hf) is new and actual. The specific target, 

which attracts our interest, first of all, is to define a functional dependence of diameter of inclusion fiber 

(MeB2) vs. velocity of elongation of a firm phase of a composite. This is the most interesting for colleagues 

- technologists and it would be a priority for a macro-scale. 
The composites of type LaB6-MeB2 are considered. 

 

   

 

 

                                    Fig.2.1 Scheme of fibrous composite. 

 

B  

A
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Notations: ,A B  - composite components insolvent in each other. A  - matrix (for instance, ), 6LaB B  - 

fibers. (MeB2)  - fiber diameter;  - concentration of component d 0c B  

Let’s write down approx integral laws of mass and energy conservation in cubic unit of two 

component composite at crystallization front x   
2

0 ,
4

d
N c substance conservation

N d v qv W energy conservation


 


   



 
                                                (2.1) 

where   - surface energy of boundary A B ,  - specific heat of melting, - number of fibers per 

volume unit, W  - heat flow spent on crystallization and fibers formation.  

q N

From (2.1) falls a simple expression for composite fiber diameter 

 
04 c v

d
W qv




   (2.2) 

and a problem is to define a heat flow W , depending on temperature distribution T .  

Fig. 2.2 illustrates a scheme of temperature distribution T  in melt and fibrous composite at stable 

mode of formation of fibers with crystallization rate v const  towards axis x . 

 

 

 

Fig.2.2 Scheme of distribution of temperature at stable mode 1 cT T  in moving coordinates.  - 

temperature of solidification, 

cT

  - thickness of crystallization front, 1


 ,  - velocity of composite 

elongation, . 

v

  0t 

 

On practice, the conditions of fibers growth on billet’s axis and its periphery essentially differ. For 

modeling conditions of crystallization on billet’s axis were considered. At this a rather grounded is a 

proposition that lateral (perpendicular to axis x ) heat removal is absent. Its presence, in areas close to 

billet surface, makes inhomogeneity of composite in cross direction (along crystallization front). In 
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accepted model a heat flow is headed on axis x  and is defined by temperature distribution along this axis 

(see fig.2.2).  

This distribution obeys the equation of heat conductivity 

2

2
, 0 , 0l l

T T T
c c v x

t x x
     

   
  

t  ,
 

where   - melt density, - specific heat capacity of melt, lc   - coefficient of melt’s heat conductivity. 

At stable mode temperature T  depends on space coordinate x  and is not time dependent. Thus 

instead of the last we obtain  

 
2

2
0, 0 .l

T T
c v x

x x
   

   
 

 (2.3) 

Boundary conditions for (3) are defined by equalities: 

   00 ,T T T T 1,   (2.4) 

since it is supposed that  at  and   0T x T 0x    1T x T  at x   (see fig.2.2). 

A solution of boundary problem (2.3),(2.4) would be a function 

 

0 1
1 exp exp ,

1 exp l

T T v v
T T x a

v a a
a

c


 

 
 

                
 (2.5) 

where  - temperature conductivity. a

The first integral of equation (2.3) (mass conservation law) can be written as 

 1 .l l

T
c  vT c vT W const

x


    


 (2.6) 

Here we suppose that: s sv v  (flow’s continuity), lc cs , where index s  is referred to composite solid 

phase. 

From here and (2.5) for a value of heat flow W  we obtain  

 0 1 exp .
exp 1

l

T T v
W c v

v a
a

 


        
 

 (2.7) 

Thus, from (2.2) and (2.7) to evaluate fiber diameter  we have d
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 

0

0 1

4
1 exp .

expl

c v
d

v a
c T T q

a

 
 

            
 

   (2.8) 

If to introduce notations: 

   , 1 exp
v

a
       , 

then the main evaluative formulas for and W  can be written as: d

 

 
    
 

 

0

0 1

0 1

4
,

1

.

l

l

c
d

c T T q

T T c v
W q

 
 







  


 


v

s

 (2.9) 

Noteworthy A case  is considered similarly. For this case we have lc c

 
   0 1 11 exp

1 exp
l s s

l l

vc c c
W T T T

c c

 


,
  

          
 (2.10) 

0 .d
W qv

4 c v



 

From (2.2), (2.9) and the last formula, we immediately obtain the following required (but not 

sufficient) conditions of fibers formation: 

     0 10, , 1 .lv W qv c T T q       (2.11) 

To define a physical meaning of  , let’s re-write it as follows: 

 
 

 
 0 1 1 0

0 1

l lv c T T v c T Tv

a T T grad T

  
 

 
 

  


, (2.12) 

where grad T  - average value of temperature gradient on the part  0; . 

From the above follows that value   is a ratio of convective heat flow (at the expense of extension 

of crystal with velocity v) to heat flow, caused by heat conductivity. Value η essentially depends on value 

 , which definition requires to consider and investigate non-stationary mode of crystallization, i.e. solution 

of appropriate Stephan’s problem, analysis of solution stability at variations of  and existence of stable 

modes of crystallization. Obviously value 

v

  depends on velocity  and fiber diameter . Thus in reality, 

the dependencies (2.9) and (2.10) are more complicated.  

v d

Analysis of simplified evaluative dependencies (2.9), (2.10) shows that 
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 

0

0
max

0 1

lim 0,

4
lim .

v

v
l

d

c
d d

c T T










 


 (2.13) 

Fig 2.3 illustrates schematically functions (2.9), (2.10). Experiments show [31], that at rather high 

velocities  there occurs unstable formation of fibers, their break or they just have no time to form. 

At velocities  there is not uniform distribution of fibers, and fibers diameter fluctuates. That is why 

there exists the interval of velocities 

maxv v

miv v n

 min maxv v v  , at which stable formation of composite 

homogeneous structure occurs and formulas (2.9), (2.10) (see fig.2.3) can be applied. Boundaries of this 

interval, obviously, may be defined and investigated by means of solution of Stephan’s problem.      

 

Fig. 2.3. Schematic dependence  vs  d v

 

As it follows from a comparison of the results of computing experiment with those of natural one a 

character of dependence coincides but not numerical characteristics. The reason of it one may to find out 

in discrepancies of performance f initial data and necessity of adjustment of the model itself. Therefore to 

achieve further progress in modeling of directed crystallization it is necessary to work on the problems 

outlined below. 
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TASK №1: To define a surface energy of crystallization front   by the method of molecular 

dynamic 
 
 

A B 
 
 
 

 

 

 

Fig. 2.4 Definition of surface energy of crystallization front    

 
 

Approximate dependence  vs. temperature   T

         1 0
1 1

0 1

T T
T T T T

T T

 
 


  


 

Solution of the task 1 by the results of numerous discussions with materials science specialists 

from different countries and agreement with project coordinator is transferred to microstructural (atomic) 

scale and would be allocated as separate problem which would be investigated in the follow up project. 

 
 

TASK №2: To define stationary distribution of concentrations С, С1, of components А, В 

Designations:  - concentration of component c B , 1 1c c   - concentration of component A , Av


 - velocity 

of diffusion flow of component A ,  - velocity of diffusion flow of component Bv


B ,  - coefficients of 

mass-diffusion and thermo-diffusion respectively, 

, TD D

 ;0;0v v


. 

1
1 1

AT

A

D D
v v grad c grad T

c Tc
  

 
, 

BT

B

D D
v v grad c grad T

c Tc
  

 
. 

Inequality  is obviously the main reason of corrugation of crystallization front. Av v
 

B

c  By definition from here and prior equalities we obtain 1 1, 1A Bc c c   v v v
  

;

 

0,A B B AT T T T TD D D D D      
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Schematic representation of space area V (periodic cell), where equations of stationary diffusion are 

solved (see fig. 2.5). 

 

 

Fig. 2.5 Schematic illustration of space area V (periodic cell), where equations of stead state diffusion are 

being solved 

Fig 2.5 also presents boundary conditions for  , ,c x y z , 
 

2

0 2
2

d
c

a d



 Equation of steady state diffusion 

to define   , ,c x y z

 

 0, , ,
BTD c

div Dgrad c grad T v x y z V
T x

 
   

       
                       (13.2) 

 

TASK №3 Definition of temperature distribution    1 2, , ,t T x tT x  and a low of movement of 

crystallization front  (non-stationary regime, Stephan’s problem)  S t

В. Non-stationary regime (Stephan’s problem) 
Crystallization fron  tT  

 1 ,T x t
 

 

 

 

 

 

 

Fig. 2.6 Temperature distribution at non-stationary mode, 1
S

l
 ( l   ), T Tl c , t . 0

 
0T  

 2 ,T x t  

lT  x  

 S t l

cT  

v  

 0
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Conditions of stationary mode 

    ,      lim lim
t t

t S t vt const 
 

   

     .      lim lim 0
t t

t S t v
 

   

Equations to define functions     1 2, , ,T x t T x t

 

 

 

2
1 1 1

2

2
2 2 2

2

0, 0

0,

p p

s s ps s ps

T T T
c v c x S t

x x t

T T T
c v c S t x l

x x t

  

  

  
    

  
  

   
  





0

 

 
Boundary conditions 
 

А) at the ends of   0;l

   1 0 20; , ; , 0lT t T T l t T t   

В) at crystallization front   S t

     1 2, , ,cT S t t T S t t T t  , 

  01 2

0 0

4
,s

x S x S

cT T
S t q

x x d

   
   

 
  

 
  . 

At limited temperature gradients from suppositions of model it falls an existence of upper ultimate velocity 

of stable crystallization  S

 

2.1. Definition of functional dependence of fiber diameter of inclusion (MeB2) vs pulling rate of 
solid phase of composite 

The conducted investigations showed that at low velocities of crystallization a deviation of 

dependence character of a number of fibers from crystallization velocity from linear dependence one is 

observed. At these crystallization rates even minimum deviation of composition from exact eutectic ratio 

brings to destabilization of a process of crucible free zone melting. Initially it was supposed that fixed 

deviations from generally accepted one inversely proportional to dependence of average fiber diameter of 

inclusion MeB2 from crystallization velocity [32, 33] are caused by fluctuations of parameters of crystal 

growth. However after accumulation of experience in melting of these systems and additional justification 

of eutectic ratio of components we succeeded to stabilize the process of composite growth with low 

velocities of crystallization front. Dependencies of average diameter of fibers from crystallization rate in 

interval 0,5-12 mm/min were obtained. At crystallization velocities up to 4 mm/min, a number of fibers per 

unit of sample’s cross section decreases with a growth of crystallization velocity i.e. their diameter grew 
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(see fig. 2.1.1). Thus the obtained results essentially differ from generally accepted representations [32, 

33]. 

 
Fig. 2.1.1. Dependence of fiber diameter ZrB2 (in system LaB6-ZrB2) vs crystallization rate (experimental 

data) 

 

This result enabled to suppose that depending on given crystallization rate there exist a few 

mechanisms, which define size of structural elements of eutectic composites at their directed solidification.  

On the base of model proposed in section 2 evaluative calculations for fiber diameter according to 

(2.9) were carried out. While calculating the authors faced a problem of absence of reliable information 

about a major part of experimental values of used physical parameters, what we had discussed in section 

1.  

Initial data of testing calculation of definition of dependence d=f (v) for the system LaB6-ZrB2: 

0c  =0,16; v   =(0-0,833)10-4 m/sec;   = 4 498,20  kg/m3; = 827,52, Joule/kg К;  = 50*103 

Joule/kg; ∆Т = 100 К; 

lc q

  = 74,07 Watt/m ;   = 145 Joule/m2 

The results of carried out calculation are available on fig. 2.1.2. 
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Fig.2.1.2. Dependence of fiber diameter vs pulling rate for LaB6-ZrB2:  

1- calculated values; 

2- experimental data 

 

The simplest model of the process of directed solidification for boride composites MeB6-MeB2 is 

based on mass and energy conservation laws for a sample brings to a conclusion that in the mode of low 

velocities of crystallization 0,5 mm/min < v < 4 mm/min diameter of fiber of reinforcing component MeB2 

increases with a growth of crystallization rate, that points on a difference in crystallization mechanisms for 

the investigated materials depending on pulling rate. 

To model crystallization processes of the investigated system in the whole technologically realized 

interval of pulling rate of solid phase component requires to consider more complicated mathematical 

models based on a solution on non-stationary Stephan’s problem. 

 

2.2 Steady state diffusion in binary eutectic systems at directed solidification from melt 
 

Let’s bring initial (ultimately simplified) solution of task 2 (see fig.2.5, equation 13.2) 

Equation of steady state diffusion to define  , ,c x y z  

Supposing , we obtain , ,TD const D const const  

 

 0, , ,
TD v c

div grad c grad T x y z V
TD D x

  
     

                                   (2.2.1) 
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From (12) falls, that at given T  and boundary conditions, solution of this equation depends on two 

constants only: ,
TD v

D D
.  

TD

D
 - thermo-diffusion solution. 

If to neglect with thermo-diffusion then 

 0, , ,
v c v c

divgrad c c x y z V
D x D x

 
     

 
                                                (2.2.2) 

This equation can be reduced to Helmgotz’s one 

 

 0, , ,w w x y z V      ,                                                                 (2.2.3) 

where  
2

0, exp ,
4 2

v v
c w x

D D
      ,   - Laplacian. 

Knowing solution of equations (2.2.1)-(2.2.3) one may design velocity fields  and current line ,A Bv v

,A B
A B

A B

d d

ds ds
 

x x
v v . 

 

 

 
 

Fig. 2.2.1 Scheme of field velocity design 

 

Numerical realization and results 
Discrete analog to diffusion equation: 
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when i=1: 
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0,1 cc ji  . 

 

At i=n: 

1,

1, ,

0, ,i j

дляточки j которая расположена на волокне
c

дляточки j которая расположенавневолокна


 


 

At j=1 point is on the axis of chosen cylinder. Thus instead of 













z

c
r

rr

1
 we have 

2

2

r

c




. 

Apart from that the axis symmetry takes place, thus we use a condition: 20 ii cc  . 

At j=m 0


r

c
 is true, for our case 0,1, 



h

cc mimi . 

Initial data for numerical experiment: 

d , fiber diameter = 0,6 mkm; 

V, pulling rate = 0,5 m/sec;    

a = 0.45 mkm 

D, diffusion coefficient =0.00012 mm2/sec 

0,0 0,2 0,4 0,6 0,8 1,0

0,0

0,2

0,4

0,6

0,8

1,0

c

 
δd, mkm 

Fig. 2.2.2 Distribution of concentration с for component МеB2 in the area of intensive diffusion δd 
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Fig.2.2.3 Distribution of concentration с for component LaB6 in the area of intensive diffusion δd. 
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Fig. 2.2.4 Dependence of intensive diffusion zone size δd vs pulling rate v  
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1.0

 
Fig. 2.2.5. Velocity fields for component ZrB2  

 

2.3. Solution of a problem of heat transfer with moving boundary caused by a change of substance 
aggregate state (Stephan’s problem) 

Task 3 was subjected to initial investigation. This problem of heat transfer with migrating boundary 

caused by change of aggregate state of substance is a problem of Stephan’s type [34-41]. This class of 

problems is referred to one of the most difficult problems of mathematical physics. Classic variant of 

Stephan’s problem is formulated for phase transitions like melting–crystallization, is reduced to equation of 

heat conductivity in the area with preliminary known interface dividing solid and liquid phase and having a 

temperature equal to temperature of phase transformation. Non-linearity of problem is governed by a 

presence of moving interface.  

      There are a small number of analytical solutions of similar problems, limiting by simplest cases. The 

most developed methods are numerical methods mostly contributed and developed in different time by 

А.А. Samarsky [42], B.М. Budak [34,35], P.N. Vabishevich [36].   

We would be based on the method of potential [43]. Let’s define temperature distribution 

.    txTtxT ,,, 21

 

It is required to define function T1(x,t), T2(x, t) from equation 
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ρ – melt density; 

Ср – specific heat capacity of melt; 

 λ – coefficient of melt heat conductivity; 

v – pulling rate of composite. 

Initial conditions: S(0) = S0>0 – given on interval (0, l) number; 

   T1(x, 0) = T1(x), 

   T2(x, 0) = Tl(x) – given initial values of desired functions 

   T1(0, t) = T0, 

  T2(l, t) = Tl – given values of desired functions at the ends of interval  0≤x≤l. 

 

Apart from this, at x = S(t) let’s require a fulfillment of conditions of consistency: 

T1[S(t), t] = T2[S(t), t] ≡T*, 

where T* - given number. 

 

Let’s designate  

ν11(τ) = T1[0, τ],  ν12(τ) = T1[S(τ), τ], 

ν21(τ) = T2[S(τ), τ],  ν22(τ) = T2[l, τ]. 

μ11(τ) = ∂/∂ξ T1[0, τ],  ν12(τ) = T1[S(τ), τ], 

ν21(τ) = T2[S(τ), τ],  ν22(τ) = T2[l, τ]. 

 

.0

];0)[(),()(

],)()[(),()(

];)()[(),()(

],0)[(),()(

122222

221

)(

221

112

)(

112

111

0

111

t

qT

qST

qtST

qT

l

tS

tS



































 

 30



Let’s introduce function 
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Substituting in (2.3.2), we obtain 
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we obtain integral representation of arbitrary decision of Stephan’s problem in a form: 
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Thus the apparatus to resolve this problem is developed and we need to make the next step – to apply it 

for solution of definite problems realizing the technology of directed solidification for eutectic systems 

LaB6-MeB2. This a rather complicated problem and its solution is also allocated for the next project. 

 

2.4. CALCULATION OF PHYSICO-MECHANICAL CHARACTERISTICS OF INVESTIGATED 
COMPOSITES 
 

Let’s consider a model object which is maximum close to technological sample obtained by the 

method of directed solidification. 

Let’s consider a cylinder with typical sizes of L, S and appropriate mechanical characteristics of matrix and 

inclusions (E – Young modulus,   - Poisson’s ratio), which suffers given external deformation and also 

can be used in cooling mode (temperature difference) encountering thermo-deformations, is considered. 

 

 

 

Fig.2.4.1. Geometrical model of material. I – MeB2 intrusion (fiber), M – LaB6 

matrix, surface G - boundary of the sample,   - 3-D area representing a sample 

MG 

I


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Algorithm of calculation of mechanical properties is based on asymptotic method of averaging by 

Bashvalov-Sanches Palencia [44], [45], i. e. in some area   correspondent to a sample of the 

investigated material, thus a boundary problem is considered as: 

 
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1

=
x
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=j j

ij 
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;           (2.4.1) 
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where  xσ ij
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 - local stresses,  xC kl
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
- local modules of elasticity and local deformations  xεij
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 Boundary conditions (2.4.1)-(2.4.3) are given as: 

  1,0  xxu


;          (2.4.4) 

       i, j=1,2,3 

  2

3

1

),( 


xxFnx
i

ijij

 ,         (2.4.5) 

where  and  - boundaries of area  , and 1 2  xF


 - given force field, applied to area surface. 

 Let’s find a solution of the above said problem as: 

   e,xw+xe=xu i
=j

jiji ˆ
3

1

  ,   i, j=1,2,3     (2.4.6) 

where ije  - components of tensor of external (macroscopic) deformations ê , and functions  e,xwi ˆ


 are 

periodic on representative cell of material. In linear approximation we obtain: 
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for six linearly-independent single external deformations pq
ije  (three one-axis compressions and three 

displacements). Thus the effective modules of elasticity kl
ijC

~
 are defined by integrals: 
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on volume of a representative cell. 
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 Thus, for given distribution of elasticity modules by the area of representative cell the system of 

equations (2.4.8) was numerically solved on 3d net to compute wi
pq(x) in each node of the cell. Then 

integral (2.4.9) over the cell was used compute effective elasticity modules, and for given “macroscopic” 

deformation eij equations (2.4.4), (2.4.5) were used to compute local details of deformations. Then simple 

counting (due to discrete form of the problem after applying the grid) allowed compute distribution of 

deformations in a cell per volume unit independently for matrix and inclusion. 

 A number of materials base on LaB6 matrix were simulated as infinite space filled by parallel round 

cylinders with axes passing through nodes of 2d periodic net. This geometry reasonably corresponds to 

the structure of materials in scope, example of which is represented on photo on fig 2.4.2 - fibers have 

approximately same diameter and placed uniformly, with no significant concentration. 

 

 
 

Fig.2.4.2 Microstructure of LaB6-ZrB2 sample 

 

 The requirement to initial melt to be eutectic specifies components concentrations in the material. 

Observation (uniform distribution of sizes and density of the fibers) allows to choose representative cell 

with single cylindrical inclusion of length which significantly exceeds it’s diameter. Specific concentration, 

relative placement and shape of fibers define uniquely possible ratios of linear sizes in the representative 

cell. Thus, ratio of typical distance between centers of the fibers (in the model in scope – linear size of 

representing cell) to their diameters is defined by solidification conditions, that mean they correspond to 

volume concentration of the fibers material in eutectic of the melt.  

 Initial data used to compute effective modules of a number of materials LaB6-MeB2 are presented 

in Table 2.4.1. 
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Table 2.4.1 Initial data: E – Young’s modules, xmass – mass share, MeB2  mg  /  - ratio of inclusions 

density to matrix one, cvol – volume share, calculated by formula gmmassvol xc  ; mg  /  – ratio of 

coefficients of volume expansion of inclusion and matrix. Young’s modules for LaB6 is accepted as 

Е=4,88x1011 Pa.  

 

 HfB2 NbB2 TaB2 TiB2 ZrB2 

E x 10 -11Pa 4.7971 6.736 6.867 5.4053 4.958 

      

 LaB6-HfB2 LaB6-NbB2 LaB6-TaB2 LaB6-TiB2 LaB6-ZrB2 

xmass 0.220 0.202 0.324 0.103 0.210 

mg  /  4.25 2.61 4.27 1.72 2.08 

cvol 0.062 0.087 0.101 0.062 0.114 

mg  /  0.719 0.922 0.984 1.250 1.281 

 

 As a result of computing experiment to define mechanical characteristics of eutectic composites the 

following effective modules of elasticity are obtained and calculated by the above-described technique. 

 
Table 2.4.2 Effective modules of elasticity of composites Cij obtained at calculations, and Poisson’s 

coefficient  111212 / CCC   , Young’s modulus     121112111211 2 CCCCCCE   and shear 

modulus in plane (x,y)  =C44.  

 LaB6-HfB2 LaB6-NbB2 LaB6-TaB2 LaB6-TiB2 LaB6-ZrB2 

C11  x 10 –11Pa 5.105 5.235 5.312 5.144 5.118 

C12  x 10 –11Pa 0.827 0.845 0.856 0.833 0.825 

C44  x 10 –11Pa 2.139 2.193 2.224 2.156 2.146 

E x 10 -11Pa 4.874 5.000 5.074 4.912 4.889 

  0.139 0.139 0.139 0.139 0.139 

  x 10 -11Pa 2.139 2.193 2.224 2.156 2.146 

 

The well-known ideas of reinforcing of materials by nanotubular structures with the aim of introduction of 

their unique mechanical properties in operational characteristics of composites touched eutectics as well. 

In [46] it is shown, what even eutectic temperature for pseudo-binary eutectic systems TiN-AlN, TiC-TiB2, 

TiN-NB2 at reduction of characteristic linear size of inclusion up to 10-20 nm falls on 0C and in 

work [47] it is shown that Vickers’s hardness for the system TiN-Si3N4-TiSi2 at characteristic linear size of 3 

900600 
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nm reaches 100 GPa. It gives a hope that in case of realization of the technology of directed solidification 

an opportunity of achievement of nanosizes for diameters of fibers of inclusion of reinforced phase the 

obtained nanocomposites will possess very attractive mechanical properties. 

 At calculations for model LaB6, reinforced by nanotubes, Young’s modulus of nanotubes is 

accepted as 47.971x1011 Pa. Geometry of a material (and, thus a representative cell) are accepted the 

same as for eutectic alloys, but a ratio of nanotube radius and cell size varies in some limits, as 

requirements to observance of concentration equal to eutectic are absent. Table 2.4.3 includes the 

effective characteristics obtained as a result of calculations depending on bulk concentration of nanotubes 

on the stated algorithm and for comparison – values, average on composite volume.  
 
Table 2.4.3 Effective and average on volume characteristics for LaB6, reinforced by nanotubes, depending 

on bulk concentration of nanotubes 

cvol 0.041 0.077 0.112 0.197 

effective on Bahvalov - Sanchez- Palencia 

C11, C22 6.552 7.805 9.066 12.082 

C33 6.955 8.548 10.140 13.923 

C12 1.040 1.219 1.399 1.827 

C23, C31  0.996 1.139 1.284 1.634 

C44, C55 11  2.609 3.018 3.434 4.435 

C66 2.605 2.999 3.394 4.342 

 

 

average on volume 

C11 6.955 8.548 10.140 13.923 

C12 1.105 1.340 1.576 2.135 

C66 2.925 3.604 4.282 5.894 

 

As it is seen from the table 2.4.3 a theoretical prediction shows a substantial growth of elastic constants, 

and control calculations of common average on volume values show a rather close results that means a 

qualifying character of Bahvalov - Sanchez- Palencia asymptotic technique. 

To obtain a distribution of thermo-deformations we accepted the following assumptions: 

1. Stresses in composite at temperature of crystallization are equal to zero 

2. Coefficients of linear expansion of composite components are isotropic 

3. Coefficients of linear expansion and modules of elasticity of components are constant and 

suffer a jump on interface inclusion – matrix.  
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Then the equation (2.4.3.) can be re-written as: 

 

 






















3

1,

,
2

1
)(

qp
ijpq

i

pq
j

j

pq
i

ijij Txe
x

w

x

w
ex

   ,     (2.4.10) 

 

where   0, mTx
 Tx,

  - piecewise-constant function of coordinates equal to zero when T=Tm: . In 

linear a ation on T     TTxTx pproxim m

  , , where   - coefficient of linear expansion

 After substitution o in (2.4.1 2.4.2) and their numerical solut
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 should be continuous) micro-

distributions of thermo-deformations illustrated in figs. 2.4.3 & 2.4.4 are calculated. 

 

ig. 2.4.3 Distribution shear component of thermo-deformations in representative cell of composite LaB6-

fB2. Green color corresponds to not deformed material. Intensity of red and blue colors corresponds to 

F
H

an intensity of shear in a plane, perpendicular to fiber axis, a color is defined by a sign of shear 

deformation 
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Fig 2.4.4 Distribution of a degree of shear component of deformation on volume. Blue curve – matrix LaB6, 

rom the results of calculations it is clear that the most part of materials of matrix and inclusion suffers 

. Mesoscale. Multifractal analysis of images of fracture surfaces in scanning probe microscopy 

Analysis of crystallization front – interface solid – liquid (gaseous) phase is usually carried out in terms 

of 

science. To do that an 

y) at space partition, 

the 

red – fiber HfB2 

 

F

only weak internal deformations associated with composite matrix structure and only the area of matrix 

around fiber is strongly deformed. 

 

3
 

traditional description of an object by means of geometrical figures (lines, segments, polygons, etc.) 

which metrical and topological dimension is equal among each other. At the same time many geometrical 

forms, which were analyzed only at description level, now could be studied and described in strict 

quantitative terms of fractal approach proposed and developed by Madelbrot [48]. 

Processing of electron microscopic images is one of a key problem of materials 

apparatus of fractal geometry has recently been applied [49, 50]. Despite successful application of the 

above said technique for investigation for example, breaks [51], fractal analysis of materials structure has 

a number of restrictions, namely, sensitivity to deviation from fractality, etc. To overcome these 

inconveniences a method of multifractal analysis of images (MFA) was developed. 

Multifractal description is based on generation of measure (by this or that wa

embracing the object being investigated, on cells, i.e. transition from fractal to multifractal description 

means thereby a transition from investigation of only geometrical structure to investigation of measure. 

All operations of mathematical morphology applied for analysis of images are ways to extract 

information of image. The approach early developed [52] to use the information of transformation for 

computer processing of images of materials structure enables to perform multifractal parameterization of 

different elements of structure, since various types of influences on material are appeared in changing of 

fractal (multifractal) structure of elements of material (grain boundaries, subgrains), microstructure (phase 

distribution, etc.), microcrack profile at its growth, distribution of pores and microcracks at a stage of pre-

fracture, break design, surface profile, etc. As it’s known, the realized symmetry of fractal structures (F-

symmetry) in objects depends on external conditions. It defines a character of self-similarity, i.e. one 

should consider a set as fractals (multifractals), which in a process of evolution degrades in monofractal. 

For multifractal sets, use of one structure characteristic – fractal dimension – is not sufficient, and requires 

defining a grade of homogeneity and other characteristics. 
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Natural fractals like colloid aggregates, aero gels, clouds, polymers, porous mediums, dendrites, cracks, 

fracture surfaces of solid bodies, etc possess only by static self-similarity which may exist at that only in 

limited interval of space scales L0<L<Lm. These objects are called as multifractals, since they can be 

represented as a set of fractal structures weighted with various weight. Rigorously proven, that  is not 

increasing function q, thus . At that d0=df – fractal dimension characterizing metrical properties of 

structure, d1=d1 – informational dimension describing a behaviour of Shannon’s informational entropy 

- correlation dimension, associated with internal energy U of multifractal 

structure. 

qd

qq dd 1

cdi

M

i
i daPPI   2,ln)(

Fundamental act of information processing is a comparison of elements of characteristics set as direct 

images of real objects or systems in information storage devices are represented by a number of 

quantitative characteristics [52]. Information is understood as a set of discrepancies of these 

characteristics compared by this or that way in terms of one or several sets. 

In a framework of developed methodology [52], a mathematical object (measure) was subjected to group 

multifractal transformation to define which form of F-symmetry it possesses. If as a result of transformation 

the object does not change, then it possesses F-symmetry, in case it does then F-symmetry is violated 

and one may define a degree of it’s violation.  

Let’s consider some investigated object immersed in Euclidean space and let’s divide it on N equal cells 

with size 1 (equal-cell partition). Let’s the object is described by measure   i ix   , ix  — 

coordinates of I cell, . Further we introduce transformation 
1

1
N

ii
       1

q

i q q  , 

   
1

N q

kk
q


   , where  x q  — so-called correlation function. When , we obtain unit identity 

substitution. Since the measure 

1q 

  i  q  fully coincides with own measure  i , at any q only in case 

of uniform measure  consti  , parameter q plays managing role, responsible for elevation of 

inhomogeneity of measure after transformation     1i i q  

1q

. This transformation represents a 

group, since for any transformation with definite parameter  there is a reciprocal one with parameter 

11 q , recovering measure. Distribution   1i q  should reflect peculiarities of own measure  i , and 

one may investigate these peculiarities while comparing measure pre- and post transformation, using a 

partial form of information of transformation [52] — multifractal information as a measure of their 

discrepancy    1lni i iI q    . Simple calculation provides us 
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where 1D  — usual informational dimension,  — generalized dimensions (entropies) Reni. qD
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From here (if to remind the rules of theory of limits) it’s seen that multifractal information bonds all Reni’s 

entropies      ln 1S q q q      with information of Neumann – Shannon - Winner of initial 

measure  ln 1i i S   . More than that, difference of informational dimension with values of Reni’s 

dimensions on “ends” of spectrum gives two evaluations of extremums of multifractal information (divided 

on  1q  ), which can be accepted as quantitative measure of order. Legandre’s transformation of 

exponent of multifractal information 

      1 1
0

lim 1
ln q

l

I q
q q D

l
     D  

provides definite parametric formulas of shifted  f  -spectrum. Thus, formulas of multifractal formalism 

are obtained at investigation of partial form of information of group transformation — multifractal 

information. 

Application of these theoretical aspects for the goals of practical materials science is realized by means of 

creation of methodology and methods of multifractal parameterization of structures with flow automat 

processing of images of materials structures as digitized photos. Scanning probe microscopy (SPM) 

enables to investigate with high-resolution surface morphology in a broad range of magnifications [55]. 

However while analysing images obtained by means of SPM, there appear significant difficulties as a 

majority of methods applied for numerical estimation of surface roughness depends on scale of 

measurements. Unlike other characteristics of roughness fractal dimension is invariant value relatively to 

scale transformation. Definition of fractal distribution (FD) enables quantitatively to describe changing of 

material surface relief developing in a process of growth, loading, fracture [53], etc. However accuracy of 

definition of a value of fractal geometry to certain extent depends on method of fractal analysis and 

parameters of SPM images. FD values obtained by different methods for the same surface often can be 

found in broad interval [54]. Having two dimensional image of rough surface where point brightness 

defines height of this point above null level one may fairly accept this image as three dimensional one, 

considering a value of brightness as additional coordinate. Having a value of height of section level, one 

may judge about a perimeter L on the amount of points with given brightness and about area A on the 

amount of points which brightness is higher than given value. 

These methods and algorithms with criteria of spectrum selection were realized as computer program 

MFRDom. 
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The above said program is for Windows 95. It enables to process sets of black & white, grey & colour 

images of 2000x2000 pixels and diapasons of values q [-200, +200]. This software is developed on the 

base of experience gained in numerical multifractal analysis of images of structures of metals and alloys 

during a number of years. MFRDom calculates spectrums by two ways using the method of generation of 

measures of rough partition (MGMRP), allows to investigate spectrums in a mode of game establishing 

random selection of scales, accumulates values of required parameters of spectrums together with the 

results of statistical processing of correct spectrums in tables. The program records on disk all calculations 

results both test files for further processing by another processors or electronic tables. It was tested on 

model objects like direct lines Serpinsky’s carpet and gives exact values of fractal dimension up to 4th (by 

the first way) and up to 8th (by the second technique) digit. 

As it was above mentioned, the program MFRDom calculates spectrums by two ways. Let’s briefly 

explain these ways below. The first way is to calculate multifractal characteristics, using a set of rough 

partitions with their measures then for each partition we can calculate generalized correlation function 

 for all given values q from certain diapason. Having design the analog of Richardson 

graph in two logarithmic axises 

 
1

kN q
k i

q


   ik

  ln lnk kl   q  for each generalized correlation function, and to define 

its inclination by the method of least squares we obtain evaluation of exponent of generalized correlation 

function ,  q

 
  ln

ln
k

k

q
q

l

 
 


, 

that is similar to use of L'Hospital rule. 

Numerically having built function  for some diapason (the broader is the better) of values q, taken 

with given frequency (the often is the better), we may further, numerically take a derivative 

 q

 d dq q   , to calculate -spectrum,  f     f q qd dq q    , and spectrum of Rein’s 

dimensions , qD    1q qD q  ,  1 1D q   . 

The second way is analogue to direct definition of  f  -spectrums and consists of calculations of sums 
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for each rough partition on cells with size  d

kl  of elementary cells for all given values q from some 

diapason and definition of inclinations of dependencies kA  and  vs  for each used value q by the 

method of least squares 
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A distinction of this technique is in a way of generation of rough measures. By calculated values  q  

and  f q  one may define Reni’s spectrum of dimensions,      q q q   f q , 

   1qD q q   ,  1 1D q   . 

Results provided by MFRDom 

D1–D40 Evaluation of measure of violation of fractal symmetry 

F40 Evaluation of quantitative measure of system homogeneity  F

D-40–D40 Difference of generalized Reni’s dimensions 

D-40 Generalized Reni’s dimensions (    1qD q q   ) 

D0 Fractal dimension  0 0D    

D1 
Informational dimension 

 
1

1
lim

1q

q
D

q





 

D2 Correlation dimension  2 2D    

D40 Generalized Reni’s dimensions (    1qD q q   ) 

F0, F1  f  -spectrums;      f q q q q    . 

Alf0, Alf1, Alf40 Scaling value  q d dq    

 

Employment of generalized dimensions for quantitative description of structure MFT enables to define: 

1)  A degree of structure order on value of parameter * . Value 0q   characterizes 

absence of F-symmetry. 

*
1 q

q D D  

2)  A change of set sparseness (density) at achievement of ultimate state (degradation of 

multifractality) on value of parameter * *
N

q
, where *

N

q
D  - ultimate value *q

D , above 

which spontaneous change of type occurs: fractal with given F-symmetry, controlling fractal’s 

degradation. 

d q
D D  

3)  Index of adaptive properties of material’s structure to external influence  
max

N NA      where 

N
  - achievable maximum density of set at its degradation into fractal with given F-symmetry. 

As it was noticed, the program MFRDom is assigned for computer realization of multifractal processing of 

images with the use of algorithms of automatic selection of scales and statistic analysis of canonic pseudo 

spectrums. 

As a model to check applicability of MFRDom to process real images of breaks we used Serpinsky’s 

carpet (see fig. 3.1), for which exact fractal characteristics are known. 
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Fig. 3.1 Testing model - Serpinsky’s carpet 

 

Falling from a fact that the program cannot process images higher than 20002000 pixels, we choose 

729729 pixels (maximum degree 3, not exceeding 2000) for model image. Variants with carpet images 

with a size not degree 3 were not considered on grounds that this image would be automatically slightly 

distorted that would bring to additional unaccounted errors. 

Images of real objects can be considered as distorted images of model objects that’s why our work is to 

consider an influence of various distortions of ideal model image (Serpinsky’s carpet) on the results of 

calculations of MFRDom program. The program calculates a lot of fractal characteristics of images, 

however the most representative and understandable is fractal dimension 0D , thus for the first turn we 

considered this particular value. 

In case of ideal Serpinskiy carpet (see fig. 3.1) calculated values (both fractal dimension and other 

fractal parameters) coincide with theoretical ones ( 0 1.893D  ). 

Further we introduced a number of errors in the carpet.  

1. The first modification of the carpet — transformation of image in negative. Here we obtained a 

rather unexpected result  — carpet’s structure remains fractal at the same rate as early, the calculated 

fractal dimension turned equal . The program has adjustment what color  — black or white— 

should be considered as a basic one (this change brings to correct result for fractal dimension of the 

carpet). 

0 1.906D 

2. Further, since images of real objects may have random size, orientation and position on image, 

we investigated influence of cyclic shifting of the carpet relatively to centered position on calculation 

results (fig. 3.1 shows initial Serpinskiy carpet, and fig. 3.2 — shifted on 181 pixel on vertical). It was found 

out that for bigger amount of shiftings (55.5%) the program as calculated fractal dimension returns value 0; 

for the rest cases 44.5% the value of fractal dimension varies from 1.893 to 1.930, thus the exact value 
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1.893 is obtained only for 2.5% cases. The results for shifting on horizontal, as was expected, are identical 

to those results at shifting on vertical. 

 

 
Fig. 3.2. Shifted Serpinskiy carpet 

 

3. Next introduction of distortions included rejection of the same amount of lines from the right and 

bottom of the image (fig. 3.3 showed Serpinskiy carpet with rejected 54 lines from the right and bottom). 

We rejected from 1 up to 243 lines. It was found out that for a bigger amount of shiftings (57%) the 

program as calculated fractal dimension returns value 0; in the rest 43% cases the value of fractal 

dimension varies from 1.880 to 2.000. 

 
 

Fig. 3.3. Cut off Serpinskiy carpet 
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Unfortunately the obtained results witness that application of averaging of calculation results on a 

big number of images may turn unjustified. This is confirmed by the results of our next experiment.  

4. From the model Serpinskiy carpet with size 729729 we randomly cut off a square fragment 

243243, for which calculations were carried out. It came to light that in a majority of cases the program 

returned value . 0 0D 

5. The results of experiment on blackening of separate white squares of carpet (one per image) 

were obtained. The program calculated all images; fractal dimension varied from 1.893 (square with size 

of 1 pixel) up to 1.909 (square size 243243). However a value of this experiment is not that high due to 

impossibility of theoretical evaluation of fractal dimension of this model. 

6. Having proceeded to discuss applicability of the program for calculation of fractal characteristics, 

let’s note, that, since the program transform images in bicolor ones, assignment of frames of 

transformation white – black would be essentially influence on calculation results. 

7. A dependence of fractal dimension from (amount) number of iteration while constructing 

Serpinskiy carpet was also investigated. For the carpet 243х243 the following results were obtained: 2 – 

for iteration under the number 1, 1.893 – for iteration by numbers 2, 3, 4 and 5. For the carpet 729х729: 2 

– for iteration for 1, 1.893 – for iterations 2, 3, 4, 5 and 6.  

8. “Spoiled” one bright square at each level (starting from the biggest carpet) in the right corner for 

the carpet 243х243. We obtained the following results: 1 level - 1.893, 2 level - 1.894, 3 - 1.901, 4 - 1.907. 

9. Painted the same square at each level (location of square does not change depending on level 

number); for the carpet 27х27 - 1.907, 81х81 - 1.894, 243х243 - 1.893 and for 729х729 - 1.893. 

The results obtained confirm that in a number of cases small distortions not touching a fractal nature of 

image (for example cyclic shear), may bring to values essentially differ from theoretical ones. More than 

that, as it’s found out, application of averaging of calculated results on big number of images may also be 

unjustified. 

In the whole variety of modern means for receiving of digital images, required for multifractal 

analysis, a researcher has to clearly represent parameters at scanning or photographing, at which he/she 

obtains these images. So, obtained in the above said experiments correlation dependencies of multifractal 

parameters with grain size of metal is built on images transferred to digital ones by scanning with density 

(resolution) 300 pixels/inch. However the use of other parameters at scanning would have brought a 

researcher to completely another results. 

There are some important circumstances, which should be taken into account while caring out fractal 

analyse of images obtained by SPM. Due to that SPM needle has a final size, it cannot penetrate surface 

roughness, which sizes are less than some certain limit. That is why SPM image does not really copy 

surface relief of sample being investigated, and is its rather plane copy. As a result a value of fractal 

dimension of SPM image may vary from FD of real surface. 

Due to a number of reasons SPM image of surface of solid bodies is always self-affine but not self-

similar. First of all, for real physical objects roughness size in surface plane is usually bigger than those in 

perpendicular one. Secondly, SPM needle diapason in scanning plane as a rule is bigger than in 
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perpendicular direction. Due to self-affine, SPM images of surfaces of solid bodies may have only local 

fractal dimension. Thus for more reliable definition of FD value we need to investigate surface structure in 

local limit, i.e. with high resolution, when scanning step is small if compare with roughness size. 

Since, self-affine surfaces are characterized only with local fractal dimension and are not fractal in 

global mean, then to define stable FD value one may only at investigation in certain diapason of 

magnification. As departing from this diapason, a fractal dimension of surface decreases and heads to 

topological one. To obtain reliable FD value characterizing surface, requires value Df  would remain 

constant at changing scanning scale at least on two-three orders. 

Eventually, investigated surfaces of real objects are only statically self-affine. That is why FD value 

can not be unambiguously defined for certain sample and may vary on various parts of sample surface. 

We may speak only about average FD value, which is obtained by averaging of fractal dimensions 

calculated for different parts of sample surface. 

Another factor, which may affect FD value, is the amount of points in SPM image. As a value of 

fractal dimension is defined by inclination angle of dependence ]nS/S0, then a reduction of points in image 

brings to decrease of a set of used values and eventually to reduction of points on a graph. The last may 

change graph inclination and thus change a value of fractal dimension. Apart from this, since a relief of 

different parts of surface may vary then a reduction of points leads to lesser stability of value Df. From the 

other hand, growth of points’ number in image causes noticeable increase of time required for scanning 

and computer processing of images that rather complicates express analyses of sample surface. Thus, a 

necessity to define if there is a dependence of fractal dimension from image size and to define optimum 

size of image providing true value Df appears. 

A question about the influence of algorithm of transformation of image in digit format on calculation 

results is still open. Since the program transforms images in two color ones knowledge of threshold white-

black may drastically affect on calculation results.  

Photos shadiness may also affect on parameters of multifractal parameterization. In cases, when 

we analyze over etched structure or it is represented by dark components (pearlite, graphite), multifractal 

parameters are distorted. 

Values of order 2001200 DD   (evaluation  - measure of violation of fractal symmetry) and 

homogeneity    (evaluation ) influence on size of images being analyzed. 200f f

To investigate small disperse images one may recommend to use resolutions with divisor 3, as in 

this case values of multifractal parameters are minimum. 

As an illustration of influence of preliminary processing of images on the obtained results let’s bring 

examples of SPM images of real structures (see fig.3.4.). 
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Scale 50000, image size 512х512. 
Without processing: D0=2.000; after 
transformation of image in “black & 
white”: D0=1.872, D1-D40=-0.049, D-40-
D40=-0.056, D1=1.878, D2=1.884, 
D40=1.927   

 
Scale 25000, image size 512х512. 
Without processing: D0=2.000; after 
transformation of image in “black & 
white”: D0=1.885, D1-D40=-0.068, D-40-
D40=0.151, D1=1.890, D2=1.895, 
D40=1.958  

 

 
Scale 5000, image size 512х512. 
Without processing: D0=2.000; after 
transformation of image in “black & 
white”D0=2.000, D1-D40= 0.144, D-40-
D40=0.301, D1=1.989, D2=1.978, 
D40=1.845  

 
Scale 25000, image size 512х512. 
Without processing: D0=2.000; after 
transformation of image in “black & 
white”D0=1.914, D1-D40=-0.052, D-40-
D40=0.055, D1=1.929, D2=1.944, 
D40=1.981  

 

Fig.3.4. Samples of SPM images of real structures 

Thus, the above offered technique of definition of multifractal characteristics of materials structure is based 

on analysis of images obtained by electron microscopy. Analysis of influence of distortions introduced in 

model fractal structures on multifractal characteristics of these structures obtained as a result of numerical 

experiment is carried out. This analysis showed that successful application of the method of multifractal 

analysis of images obtained by SPM unfortunately strongly depends on qualification and experience of a 
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researcher who carries this analysis. Our experience showed that as a rule, two researchers using the 

same set of SPM images obtain different values of multifractal characteristics. However if to accept a 

number of strict requirements for preparation of a package of analyzed images and to unify algorithms of 

calculation of multifractal characteristics then we would obtain a powerful method of quantitative 

characterization of structural parameters of investigated systems. 
 
4. MICROSTRUCTURAL ASPECT OF A PROBLEM OF COMPUTER DESIGN OF EUTECTIC 

COMPOSITES IN SYSTEM LAB6-MEB2 
 
4.1 PSEUDOPOTENTIAL METHOD OF CALCULATION OF TEMPERATURE AND CONCENTRATION 
OF COMPONENTS IN EUTECTIC POINT 
 

One of the possibilities of modeling of phase equilibria in multicomponent systems is a 

thermodynamic calculation [56]. Usually to resolve this problem requires a set of experimental data, on 

which base one may calculate equilibrium phase composition in a broad temperature interval. Simulation 

results depend on reliability of basic experimental data. Any experimental information obtained by various 

researchers has a scattering associated with measurement device errors and chemical purity of 

investigated material in various cases. Experimental information is adequate, when the obtained results of 

a set of independent measurement processes meet each other. Modeling of phase equilibria of 

multicomponent systems from the first principles without required attraction of experimental information is 

very important for critical evaluation of experimental data available in literature, which contain a certain 

controversy.  

To calculate characteristic parameters of eutectic systems as LaB6 - MeB2 one may use 

thermodynamic potentials built on the base of quantum – mechanical calculations.  

A background of being investigated composite materials in the system LaB6 - MeB2 is made by 

lanthanum hexaboride (LaB6) possessing with cubic structure like CaB6, where a simple cube from 

metal atoms is centered by octahedron from boron atoms (see fig.4.1.1). Diborides of transitive metals 

have hexagonal structure of type AlB2, where boron atoms form graphite-like nets perpendicular to axis 

Z, and the whole structure – subsequent alternation of hexagonal layers from metallic atoms located in 

units of hexagonal dense lattice with small ratio с/а and layers from boron atoms which form hexagonal 

two dimensional net (see fig.4.1.2) [57]. 
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Fig. 4.1.1 Crystal lattice LaB6   
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Fig. 4.1.2 Crystal lattice MeB2 

 
THERMODYNAMIC POTENTIAL 
 

To describe a process proceeding at constant atmospheric pressure, a thermodynamic potential is 

used 

TSUF  ,            (4.1.1) 

where U - internal energy, S - entropy of system and T - absolute temperature.  

Stable state of system under given conditions is a state with the lowest thermodynamic potential F. 

Let’s prove that on the base of components LaB6 and MeB2 quasi-binary systems of eutectic type 

may appear and let’s define characteristic parameters (temperature, concentration) of these systems. 

Assuming that there are rather big single crystals (several angstroms) and for their description an 

employment of quantum-mechanical equations is justified. We consider only equilibrium state of solid 

solution on the base of two components for each system. 

The following assumptions were made: 

 1.Composite material (LaB6 - MeB2) consists of two types of single crystals A (LaB6) and B (MeB2). 

The interface between two single crystals is chosen from geometrical considerations of coherence of 

crystalline lattices for two components A and B; 

 2. On interfaces of two different crystal lattices by virtue of smallness of local stresses responsible 

for incomplete correspondence of lattice parameters are not accounted for; 

3. Energy of electron – ionic system is calculated per molecule using the second order perturbation 

theory by means of pseudopotential method; 
 If a crystal consists of similar atoms, then to calculate the energy of interatomic interaction a 

conception of volume per atom in crystal lattice is used. For crystals with complex structure a conception 

of average volume per atom in crystal lattice is incorrect. For these crystals a conception of representative 

cell instead of atom is introduced. Elementary cells consist of molecules, which volume coincides with cell 

volume. Considering that a complex structure is a crystal lattice with basis and all quantum-mechanical 

calculations carried out for atoms may be applied for molecules accounting for their mutual location.  

4. Atoms interaction is accounted for only between closest neighbors in crystal lattice (1st 

coordination sphere); 

5. System is equilibrium at constant volume. 

Energy of electron-ion system in terms of pseudo-potential method in the second order of perturbation 

theory can be written as a sum 

                               )(
1 

jl
jlR

N
U        (4.1.2) 

Rij - distances between atoms i  and  j,  N- number of atoms in system. 

Pair of interatomic potentials is chosen as previously described [58] 
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На основе сделанных допущений энергию твердого раствора, приходящаяся на одну 

представительную ячейку с концентрацией  для компоненты А можно представить в виде: C

                          ,     (4.1.3) ABBBAA UCCUCUCU )1()1( 22 

where  - respectively energy of interaction between molecules A – A,   B – B, and A – B 

, and a free energy we represent as [56] 

ABBBAA UUU ,,

               BABAABBBAA SCSCTSTk
N

UCCUCUCF )1(
1

)1()1( 22   ,         (4.1.4) 

here  - Boltzmann’s constant,  and  - components entropy,  - entropy of components of 

mixing,  - total number of molecules in system. 

k AS BS BAS

N

 To build thermodynamic potentials requires to define internal energy of system (energy electron – 

ion system). For calculation energy  electron-ion system a method of a priori pseudopotential is used 

[59]. 

U

 

DEVELOPMENT OF PSEUDO-POTENTIAL 
 

 If in complex structures made of molecules XYn to combine the beginning of co-ordinates with atom 

X then atoms Y would be located on a distance j


, thus pseudo-potential can be presented as 

 






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,                       (4.1.5) 

where ,  and ,  volumes and pseudopotentials of atoms entering in composition, X XV Y YV j


- 

radius – vectors of atoms Y relatively atom adopted as the beginning of coordinates, - volume per 

molecule,  - number of atoms of the second component. In calculation we use a priori pseudopotential 

of type [59]  
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.                            (4.1.6) 

Here  - orbital quantum number, - its maximum value for given atom,  - projection operator, , 

 pseudopotential parameters (

l 0l lP lA

lR r - distance from electron to ionic shell). 

 Parameters of pseudo-potential  and  for presented elements are calculated by the 

methodology [59] and presented in table 4.1.1 (all values are in atomic units 

lA lR

1 me ).  

 

Table 4.1.1 Parameters of pseudo-potentials (  and ) for investigated elements lA lR

 
0R  1R  2R  0A  1A  2A  
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La 0,7045 0,6693 0,6456  5,11  5,647 6,05966 

Ti 0,5439 0,5158 0,470  6,6176 7,3284 8,298 

Zr 0,6335 0,5998 0,573  5,683  6,302 6,78098 

V 0,520 0,500 0,468  6,923  7,56 8,33 

Cr 0,495 0,477 0,446  7,27  7,924 8,744 

B 0,258 0,192  - 12,99 19,69 - 

Hf  0,523 0,497 0.477   6,88   7,61 8,174 

 

 

 

Calculation of internal energy 
  Energy depending on structure type at constant molecule volume, would be a sum of electrostatic 

energy and energy of zone structure, which can be presented as a result of a sum of pair intermolecular 

potentials. 

Pair intermolecular potentials for two molecules ( i  and j ), distanced on , have a form jiR

  
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.          (4.1.7) 

Here - number of free electrons of atoms entering in molecules composition, 21 , zz )(0 q


   - 

characteristic function 

)()()()( 2
0 qqqVq 


,                                            (4.1.8) 

where )(q  and )(q  describe shielding and correlation of free electrons in investigated systems [58].   

Energy of interaction of one type molecules  or  does not differ from analogous 

calculations for atoms and is defined by rearrangement of terms. Energy of molecules interaction can be 

presented as a sum of pair interatomic potentials,  

AAU BBU

)(
1

,0


ji
jiAA R

N
U


                                           (4.1.9) 

where jiR


 - distance between molecules  and i j  (  - number of molecules in representative volume).  0N

 To calculate energies of interaction of various molecules let’s make some simplifying steps. Let’s 

chose molecule’s average volume and charge, at presence of two types of molecules A and B, in a form 

 )(
2

1
);(

2

1
BABA zzz  ,                                 (4.1.10) 

where  and   represent volume and charge of molecules A and B. AA z, BB z,

Let’s represent  as )(0 q

)()()()()(0 qqqVqVq BA  .                                       (4.1.11) 
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Here and pseudopotentials of molecules of type A and B, but AV BV )(q  and )(q  functions 

accounting for exchange-correlation effects and shielding of free electron gas of averaged volume. Pair 

intermolecular potential for two types of molecules distance on  can be written as jlR

        qdRqiz
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Here 0q


 - wave vector for mixed structure. Averaging is carried out through numerical integration on  in 

interval [ ] (  - Fermi impulse for averaged volume). Energy of interaction between 

molecules of type A and B let’s write as 

0q
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Calculation of entropy 
 Components entropy can be defined by values of energy of thermal fluctuations of crystal lattice. 

 Average energy of fluctuation of crystal lattice [61] 

)1)/((exp(   kTU
q

qqT   ,     (4.1.14) 

where summation is carried out on all types of fluctuations (i.e. not only for all wave vectors q


, but for all 

polarizations).  

Using Einstein’s model [61], where all fluctuations are assigned with one frequency, at temperature 

 for energy of thermal fluctuations (per one molecule) we obtain  T
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
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 .                                          (4.1.15) 

Let’s define a heat capacity  (at constant volume) [61] through energy of lattice oscillation C
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 Components entropy we define falling from [61] ratio 

dTCTdS   .     (4.1.17) 

Frequency of atoms oscillation   is defined through power constants, which represent second 

derivatives from energy of interplane interaction on lattice parameter perpendicular to these planes.  

Oscillation frequency is defined [59] by formula 

M

 2 .                              (4.1.18) 

Here 
2

2

c

E




  at  represents power constant,  - mass of molecule, - energy of interplane 

interaction (  - lattice parameter perpendicular to oscillating planes,  - its value in equilibrium state of 

crystal). 

0cc  M E

c 0c
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For calculation of energy of interplane interaction we represent a full potential as: 
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Summarizing (4.1.9) on two parallel densely packed layers distanced from each other on  and 

displaced relatively each other on vector 

h




. In case MeB2 2/ch  , 3/3/2 ba


 , where ba


,  - 

vectors of basic plane, and .aba 


 E – energy of interaction between two planes (per surface unit) 

can be presented as follows: 
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Here  - area per atom in densely packed layer, and vector S q


 is decomposited on two components: Sq


- 

on basic plane and  - perpendicular to it. Zq

For calculation of shift entropy we would fall from Boltzmann ratio 

WkS ln , 

where , as it’s known, represents a number of opportunities of realization of considered macroscopic 

state by means of exchange of molecules. We are only interested in additional opportunities appearing at 

the expense of displacement of components A and B. A number of these opportunities makes [63]  
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AN ,   - number of molecules A and B. Using Sterling’s formula for bigger , and introducing here 

value 

BN N

N
N

N
NC  BA  1 , we obtain shift entropy 
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  EUTECTIC FORMATION AND CALCULATION ITS CHARACTERISTIC PARAMETERS 

 

After substitution of expressions for components entropy ,  and  in formula (4.1.3), 

thermodynamic potential for investigated alloys in system 
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Thus we obtained a functional dependence of thermodynamic potentials of composite materials 

from concentration and temperature. It’s generally accepted that thermodynamic potential for ultimate 

case of insolubility in solid state degenerates in a straight line for all compositions from =0 to =1 [64]. 

Calculated dependence of thermodynamic potential from concentration in terms of quantum-mechanical 

theory differs from linear law (see fig.4.1.3). 

c c
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Fig.4.1.3. Dependence of thermodynamic potential of composite material vs concentration; solid line - for 

LaB6-ZrB2, and dotted one – LaB6-TiB2. 

 

Energy of mixing 
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2

1
BBAAAB UUUU      (4.1.23) 

defines type and measure of stability of this phase [64]. In case U < 0 interaction of atoms of dissimilar 

components is stronger than that of atoms of same component (they form continuous number of solid 

solutions), and at > 0 there occurs a disintegration on two solid solutions of different concentration. U

As indicator of formation of eutectic in solid phase the following condition is used [64]:  

TkU 2 ,                                                 (4.1.24) 

where  - any temperature from the area of existence of given phase. T

 Alloys composition in system , as well as temperature in eutectic point is defined from 

conditions  
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Eventually we obtain a system from two algebraic equations with two unknowns -  (for component А) 

and . 

EC

ET

 

 

 

 

 

Results and discussions 
Lattice parameters of elementary cells are defined on minimum of system’s total energy. 

Calculated values of energy of interaction between components in investigated systems are presented in 

[65-66]. The results of calculations are available in tables 4.1.2-4.1.7. Calculated values of parameters of 

crystal lattices are in a good agreement with experimental data. 
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Fig.4.1.4. Dependence of energy of electron-ion system vs parameter of basic plane ( 1 – LaB6; 2 – LaB6 - 

ZrB2 ; 3 - ZrB2) 

 
At calculation of energy of interaction of two components  it is necessary to choose a 

boundary of joining of elementary cells and here we accounted for all possible configuration of cells 

joining. In system LaB6 – MeB2 possible joining is illustrated on figs. 4.1.5-4.1.6. We used those values of 

energy at which the system is stable (i.e. has a minimum energy).  

ABU
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Fig.4.1.5. Location of boron atoms in plane [002] in elementary cell LaB6 and MeB2. 

 

 
 

 Fig.4.1.6 Joining of atomic planes [002] LaB6 and MeB2. 

 

Table 4.1.2. Lattice parameters, internal energy for components and bulk composite material (as well as 

energy of mixing) for systems LaB6-MeB2 in atomic units ( 1 me ),    - oscillation frequency in 

units sec-1 (U11 -  or ) AAU BBU

    lattice parameters ca ,

 calculated          experimental [57] 

-  mmU -  ABU

LaB6-
MeB2 

  
sec-1 1310

  ∆U  

LaB6 7,897                          7,948 0,84145  0,04727  

TiB2 5,709;   6,138;      5,709;   6,1377 2,18914 0,2233 0,0577 1,29199 

ZrB2 6,065;    6,59;         5,99;     6,673   1,6979 0,207618 0,04216 0,99928 

HfB2 5,985;    6,47;        5,936;   6,529 2,0934 0,2106 0,066236 1,2568 
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VB2 5,642;   5,804;        5,67;     5,784 0,5429 0,2338 0,04334 0,45837 

CrB2 5,62;      5,779;       5,61;     5,783 0,53276 0,23482 0,041568 0,45228 

 
Calculated values of energy of interaction between components in the investigated systems are 

presented in table 4.1.2. Lattice parameters of elementary cells are defined on minimum of total energy of 

system. Calculations were made for concentration 1;5,0;00 C of one of the component. In case 

 all possible variants of joining of elementary cells of two different components were considered. 

Calculated values of lattice parameters of components differ only slightly. 

5,00C

For all investigated materials the energy of mixing U  [65-66] has: 

1) positive sign that confirms experimentally defined fact about complete mutual insolubility of 

strengthening components in matrix; 

2)  ( - max temperature of given phase, i.e. melting temperature of refractory 

component), that is sufficient and required condition for eutectic formation in the investigated system. 

max2kTU  maxT

For VB2 - has min value if compare with other composite materials on the base of LaB6 and 

diborides of transitive metals [3], = Joule and  Joule, i.e. the 

following condition is true . Table 4.1.2 presents values 

U

U

max2kT

1810225184,0  18
max 101656648,02 kT

UU   and  for the rest of the 

investigated systems. 

max2kT

Concentration compositions and temperatures correspondent to eutectic ration are confirmed 

(table 4.1.3).  

 

Table 4.1.3. Characteristics of eutectic composite materials in system LaB6-MeB2 

MeB2  cE  (calculated) % 

mol      volume 

        cE  (experimental)  % 

mol.     volume         volume 

      [ 11 ]                  [ 1-5] 

         TE   K0 

Calcul.        Exp 

               [1-5] 

TiB2 25            10,497 34           16               10,7 2600          2680 

ZrB2 31,1          16,22 32           16               16,3 2750          2740 

HfB2 22,5          12,38 30           16               12,6 2770          2750 

VB2 54,2          29,10 69           38               29,6 2550          2580 

CrB2 61,9          41,34 73           48               45,2 2460          2470  

NbB2 39,3          19,77 43           23               20,2 2720          2710 

TaB2 28,5          12,98 40           21               13,1 2740          2730 

 

By means of the method of pseudo-potential in the second order of perturbation theory for 
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composite alloys in systems LaB6 MeB2 we calculated: 

- Parameters of crystal lattices, components and systems as a whole;  

- Internal energy of components; 

- Energy of interaction between molecules of components of composite alloys; 

- Energy of interplane interaction for components; 

- Energy of mixture, which for all investigated alloys satisfies the condition of formation of eutectic 

at temperature T (where T - temperature from an interval of existence of a solid phase); 

- Frequencies of thermal fluctuations of molecules of these systems;  

- Energy of thermal fluctuations of molecules in terms of Einstein's model. 

- Concentration of components and values of temperatures in eutectic point; 

 

Analysing the results of numerical experiment we may assert that the suggested model that uses 

pseudopotential rather good describes a behaviour and state of the investigated self-reinforced 

eutectic quasibinary alloys.  

 

 

4.2 Structures design 

 
The primary goal of investigation in this direction is to design universal, geometrical-topological model of 

appearance, selection and evolution of cluster substructural units in nonequilibrium processes of crystals 

formation of given chemical compounds. 

A common property of crystal solid bodies is global coherentness in a spatial arrangement of atoms. 

Mathematically, atoms are characterized by three-dimensional 3D lattices (or point lattices), being a 

geometrical image of group of T translations. It should be noted that any discrete structure including 

atomic crystal structure, mathematically could be presented as a graph, which tops – atoms, and bonds 

among those – graph edges [76]. 
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All existing models of structure of crystal structures are geometrical-topological models only 

describing a global structure of atomic ensembles (discrete sets) in two extreme conditions: pre - – there is 

a "system - chaos" and post solidification – "system - crystal". 

Up to now there has been no algorithmically developed model of transition from the ordered 

Delaney’s systems to ordered systems, described by crystal lattices. 

Usually (rD, R) - Delaney’s systems considered in the modern literature sources 1980-2007 [77-80] 

are static. These systems are shot of a parameter describing evolution atomic systems. This key 

parameter of a system is time [81]. In (rD, R) - Delaney’s systems a program of irreversible evolution of 

system at microlevel is absent – not highlighted the types of possible trajectories of change of atomic 

structure of clusters along «time row»; not considered the sequences of transitions from elementary to 

more complicated structures spontaneously appearing in system. The most important at the analysis of 

systems evolution is an introduction of the rules of selection of special types of isomers from a set of 

topologically possible, through definition of informational-significant clusters [81] and modeling on of an 

assembly of periodic structures with different dimension on the base of those clusters. 
In terms of a physical model an algorithm (scenario) of evolutionary behavior of system should be 

determined. A direction of primary development of system and its possible change in time (after transition 

to higher level of self-organization) should be supervised by a change of values of some universal 

parameters of system, which are required to be precisely determined. Three-dimensional symmetry only 

reflects a specificity of structural interactions in system at all levels of self-organization and should be 

derived (obtained) at cluster modeling of an assembly of crystal structures (and not visa versa). 

As self-organization we understand a phenomenon of spontaneous formation of ordered spatial 

structures in nonequilibrium open systems. To this type of systems we may refer crystal forming systems, 

in which there is a spontaneous appearance of long range ordering in arrangement of structural units (SU) 

of any nature (atoms, micro- and macromolecules, clusters), originally existing as a chaotic mixture; this 

process is called as crystallization. 

In lab conditions, to obtain a single crystal compounds with given architecture and interesting physical and 

chemical properties, a labor-consuming search of appropriate conditions is required to initiate a 

crystallization, - i.e. selection of appropriate density of flows of chemical reagents and a variation of 

temperature and pressure. Hierarchical levels of complexity of organized matter growing in time in physics 

of structurally - organized condensed phases schematically can be presented as following sequence: 

 
Clusters →superclusters 

 

 

 

 

 A distinction among molecules and clusters – only in nature of interpartical bonds (not covalent and 

covalent) at transition of system to higher level of self-organization and these distinctions come to light 

only during system evolution. In crystal forming system appearing as a result of its evolution, solid bodies 

have long range ordering – global structure or large-scale coherence in arrangement of particles of any 

Molecules →supermolecules 

Crystals 
Atoms
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nature. For clusters in the majority of element compounds (formed less than 100 atoms in the Periodic 

system) all bonds among atoms at all levels of self-organization of system remain indiscernible and there 

occurs a formation of three-dimensional structures of a frame type with equal (or approximately equal) 

lengths of interatomic bonds. Thus a memory about cluster (island-like) nature of predecessor of structure 

in a macrocrystalline condition may appear not preserved. Special methods of combinatory-topological 

analysis for its revealing in all known crystal structures are required. Elementary compounds - elementary 

on structure and more difficult objects of inorganic nature - silicates and synthetic phases – high-

temperature superconductors of layered cuprates [83, 84] are referred to those crystal structures. For the 

last it is revealed more than thirty structural types (the most complicated compounds on chemical 

composition), for the first time obtained during the last 15 years. For all crystal structures a presence of 

cluster level of formation of predecessors is postulated, and crystallization in system is considered as 

kinetic transition like "disorder - order" appearing under a certain program of matrix assembly. The 

problem of cluster self-organization in atomic systems elementary on structure from originally chaotic 

mixture of microatomic formations – clusters – stepped forth on a foreground at modeling of the processes 

of crystals growth only recently. 

The most widespread structure on a boundary «melt-crystal (solid body)» is cubic I-structure (with 

bulk-centered Brave lattice). For this structure a value of coordination number (CN) is accepted as 14 (i.e. 

a sum of values 8+6) or only 8. 
The analysis and explanation of known experimental data (on structure, composition of crystal 

phases and conditions of their reception) should be carried out in terms of algorithmically designed 

geometrical-topological model of formation, selection and evolution of clusters. Accordingly, a solution of a 

problem of modeling of processes of self-organization of atomic systems would be carried out through 

disclosing of mechanisms of intercluster condensation. Thus a cause-effect relation in a form of a program 

of assembly of structures would be wrote as significant sequences of elementary events resulting in 

occurrence of long range ordering and an arrangement of structural units. Actual problem of physics of 

condensed condition (and natural sciences as a whole) is modeling of processes of self-organization in 

nonequilibrium systems and in an end, an explanation of proceeding of the processes of self-organization 

at microscopic, cluster level, as complimentary, highly selective assembly of structures from microparticles 

with different chemical compound of atoms. 

Let's accept the following crystallographic definition of cluster-predecessor and super predecessor of 

crystal structure. 

Cluster-predecessor of structure is a multiatomic cluster (from two and more atoms, determined as 

some monomeric subunit), condensation of cluster at all stages of assembly of structure occurs on the 

mechanism of complimentary bonding and is supervised by triple selection on transmitting symmetry. 
Super predecessor of structure is overcluster structure of a high level (supercluster, superpredecessor), 

revealed as a result of algorithmically carried out modeling of the process of complimentary assembly of 

crystal structure from cluster-predecessor (monomeric subunit). 

After identification of cluster-predecessor a common scheme of algorithm of assembly of any crystal 

structure of frame type looks as follows: 
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1 level: cluster-monometer dimer (short circuit from monometers); 

2 level: dimer (short circuit)   tetramer (layer from short circuits); 

3 level: tetramer (layer from short circuits)   octamer (microframe from layers). 

Hierarchical ratio between cluster-predecessor and superpredecessor of crystal structure are 

obvious. The first is an island-like 0-dimensional predecessor (pro-predecessor) of three-dimensional 

superpredecessor. 

In structures with chain-like structure – the superpredecessor is defined on the first level of covalent 

self-organization of system (level of formation of repeating link of the chain), for phases with layered 

structure - at the second level of self-organization (formation of a layer from covalent-bonded chains). 

The general scheme of matrix self-assembling of crystal structure has three partially overlapped stages of 

self-organization of systems accepted in physical models of kinetic transitions like "disorder - order": 

 Small-scale fluctuations – "template" stage: formation and disintegration of the elementary 

associators from atomic clusters or molecules in system; minimal degree of complimentary 

bonding. 

 Mesoscale fluctuations – "self-organization" of system: formation of more long-living (stable) cluster 

ensembles in a form of short chains, microlayers and microframes; in case of molecular systems – 

complimentary formation from molecules of two or three-dimensional associators as 

supramolecular ensembles. 

 Large-scale fluctuations (phenomenon autocatalysis) – "self-assembly" of system: complimentary 

three-dimensional condensation of cluster superpredecessors or super (supra) molecular 

ensembles; a stage of formation of global crystal structures. 

One of the principles of macrostructural evolution of inorganic systems implies a preservation of 

system in integrated condition, first of all, crystal forming particles, as particles with other things being 

equal most quickly reaching a high level of hierarchical self-organization. 

Let's introduce and illustrate the basic geometrical conceptions, which we further would use at 

description of self-assembly of atomic systems: 

Euclidean space usually designated as Rn is called n-dimensional vector space in which scalar 

product of vectors is determined. 

Let's consider a discrete set of points Р = {Р1 Р2, Р3...} in space Rn. Then three following concepts 

[84] can be determined. 

Radius of covering of point Рi, is usually designated as R and is the least upper boundary for a 

distance from any point from Rn up to the nearest point Рi. If this upper boundary does not exist, then 

R = . Spheres of radius R with centers in points from Р cover the whole space Rn. 

Voronoy polyhedron V (Pi) The polyhedron is built around each point Рi. It consists of points of space 

Rn which are as close to Pi as to any other point Рj. Voronoy polyhedrons are also called as Dirihle areas, 

Brillouin zones or Vigner -Zejts cells. 

Voronoy polyhedrons are not crossed, but they have general edges. Each edge lays in a plane, 

equidistant from two next points Рi. e Voronoy polyhedrons are convex polyhedrons. Association of 
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these polyhedrons coincides with the whole Rn. If a set Р forms a lattice, then all Voronoy polyhedrons 

are congruent. 

As an example let’s consider a cluster from 19 atoms, represented on fig. 4.2.1a. Centers of atoms 

on fig. 4.2.1b are presented as a set of bonded points Рi. Topology of bonds of atoms in ensemble 

characterizes structural graph, where atoms (graph vertexes) are bonded by direct lines (graph edges). 

The coordination sequence for central atom in cluster looks like (6, 12). Built square matrix of 

connectivity of graph vertexes with dimension 19х19 would show a presence of three groups of 

vertexes with different local environment. Three and four bonds characterize on six vertexes on cluster 

boundary, six bonds have other seven graph vertexes. Voronoy polyhedrons of spherical packing — 

regular hexagon (fig. 4.2.1c). 

 
a)   b)   c)    d) 

 

Fig. 4.2.1 Bidimentional hexagon packing from rigid spheres: а) represented as spheres touching 

each other; b) representation as bonded points — graph vertexes; c) Voronoy polyhedrons — regular 

hexagons (center of polyhedrons — small balls) are allocated. Voronoy polyhedrons completely 

(intervals free) fill in a plane; d) Delone areas — triangles (center — "empty" black Delone sphere) are 

allocated. Delone areas from triangles completely fill in a plane 

Delone area is defined for each vertex of Voronoy polyhedron; is a polyhedron being a convex 

environment of points from Р, the nearest to given vertex. 

 

Delone areas also form splitting of space Rn into convex parts. Such splitting is dual with regard to 

splitting of the space on Voronoy polyhedrons.  

On a plane a physical sense of allocation of Delone areas in infinite atomic systems is in 

definition of types of locally bonded groups of atoms (clusters); a description of cyclic subgraphs (i.e. the 

system is characterized by certain set of n-polygons) is carried out. Delone areas with polyhedral 

structure (as a convex environment) are allocated in space of atomic system. 

Fig. 4.2.1.d illustrates Delone areas for 19-atomic cluster. The areas look like triangles (the center of 

each triangle has "empty" black Delone sphere). 

Delone areas from triangles as well as Voronoy polyhedrons (intervals free) fill in the plane. 
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Set of points of Eulerian spaces Rn is called as (rD, R) Delone system if its points meet the 

following two requirements (axioms) [77-80]: 

1. Distance between any two points of the set is more than some fixed piece of length rD. 

2. Distance from any point of the space up to the point of a set nearest to it is less than some 

fixed piece of length R. 

In point (geometrical) models of description of atomic systems a relationship of rD and R is 

analyzed. In physical models for the characteristic of atoms of system let’s in addition introduce a value 

of radius of atom r. 

The first axiom, as applied to real atomic systems, implies a fact that the centers of atoms in 

any atomic formation can not approach as much as close to each other owing to final sizes of atoms. 

Accordingly, the minimum value of Delone sphere put into between centres of atoms, can be equal only 

rD = 2r. 

At modeling of atomic clusters the value 2r we accept as minimum possible atomic distance S 

(А-A) for atoms A which form cluster. Other values of interatomic distances S (А-А) at increase of a 

number of contacts among atoms may be equal 2r or more 2r, for example, at formation of not 

covalent bonds by two-atomic molecules. 

The second axiom implies the universal nature of condensed condition of real physical system (gas, 

liquid, solid body). In system it is possible an introduction of final distance among particles so that 

radiuses L described around all particles, would completely cover the whole space and that among 

those a special final radius, with value L = Lmax would be equal R. 

There exist ultimate values of particles density and if they are reached there is a formation of 

crystal structures and, visa versa, if particles density falls up to some minimal value crystallization is 

terminated. It is associated with strengthening (fracture) of spatial-time correlations in process of 

increase of particles density in system. In more dense environments particles have no time to fall apart 

up to the elementary components and as clusters participate further in intercluster interactions. 

In terms of the general theory of systems two introduced axioms mean, that: 

а) objects of system (considered as discrete (indivisible) particles - atoms with radius r are 

determined; 

b) local characteristics of pair interactions of atoms in atomic ensemble (final minimal value rD and 

final maximal distance between atoms in system which correlates with value R) are set. 

Imposing of the third (additional) condition on a relative positioning of centers of atoms (points) in 

space, namely [78, 80]: 

с) each of points in system possesses equality of a local milieu of other points, results in systems of 

points which meet to a distant arrangement of centers of atoms in crystal structures (crystal 

lattices). 

 The last condition defines a final macrocondition of evolutioning atomic system.   

In real physical structures atoms in lattices are overlapped, as they are not absolutely rigid – occurs 

overlapping of external electron envelopes of spheres - atoms. In models of structures of importance is to 
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calculate a special case of an arrangement of spheres in lattices of different dimension when the volume 

of overlapped areas of spheres would be minimal (most economic) In three-dimensional space this 

property is referred to cubic I-lattice [84]. 

At crystallization local symmetry of cluster is not that important but a mechanism of construction of a 

chain – layer – a frame and preservation of transmitting periodicity at all stages of assembly. 

The theory of graphs is an area of finite mathematics studying discrete structures, named as graphs. 

In crystallography the theory of graphs is applied to modeling of classification and investigation of 

combinatory-topological properties of topological clusters. 

In common view – graph is set of points (vertexes) and a set of pairs of these points (not necessary all), 

bonded by lines (edges). 

 Other basic concepts of the theory of graphs which are used in further work: 

 Way in graph – alternating sequence of vertexes in which any of vertexes does not repeat. 

 Contour – closed way in which the first and the last vertexes coincide. 

 Chain of graph – sequence of edges in which any of vertexes does not repeat. 

 Cycle – closed chain in which its initial and final vertexes coincide. 

 Graph is called as bound if any pair of its vertexes is bonded by a chain and/or way; otherwise 

graphs are called as inconsistent. 

 For solution of topological problems the graphs are represented by means of adjacency matrixes in 

which lines and columns meet numbers of graph vertexes. Elements accept values 0 and 1 (that 

accordingly characterizes the absence and presence of bond between given pair of vertexes with chosen 

numbers). Diagonal elements of the matrix are zero by definition. 

The theory of graphs and regular polyhedrons is an auxiliary mathematical apparatus, which does 

not enter into a circle of interests of materials science teams (and consequently general educational 

courses) however is required for understanding of suggested ways of solution put before us in this 

investigation. 

Let's get back to designing of clusters. Definition of bonded atom – atom in a molecule (cluster) 

should enable a possibility to define all its properties. Due to physical continuity this definition should turn 

to quantum-mechanical definition of appropriate properties of isolated atom. 

Two identical samples of substance possess identical properties. This simple fact may be distributed 

on atoms and to demand, that atoms are to determined in real space in a way that for identical atoms in 

two different systems or in different parts of one system (for example, in a solid body) a contribution of this 

atom to complete properties of system is identical. Atoms – objects in real space. A theory defines those 

atoms through a division of real space, basing on topological properties of molecular distribution of 

electronic density (ED), i.e. its kind in a real space. A constancy of properties of atom in theory, including 

its contribution to complete energy of system, should be directly defined by an appropriate constancy of its 

ED distribution. If ED distribution in two different molecules are the same, i.e. in a real space of two 

systems the atom or some functional group of atoms are identical, they provide an identical contribution 

into complete energy and other properties in both systems. It falls from a direct relationship between a 

spatial form of atom and its properties, which we may identify in different systems. 
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In definition of topological properties of molecular distribution ED a nucleus plays an important role, 

being so-called attractor, which may be used for definition of atom. At this approach a chemical 

individuality of atom is defined by ED distribution. A question «if there are atoms in molecules (clusters)? » 

is an equivalent to two equally obvious questions of quantum mechanics: whether a state function ψ(x, t), 

containing an information about a system may predict unique division of a molecule into subsystems and if 

yes, whether it is possible to define observable values as well as their average values and equations of 

motion for subsystems? Affirmative answers to these both questions are required for description of 

physics of atom in a molecule or cluster by means of quantum mechanics. One should account for, that 

quantum subsystems are open systems determined in a real space, and their boundaries are defined by 

specific properties ED. The state function ψ defines the information, which may be known about a 

quantum system. In a theory of molecular structure, free from any or subjective assumptions, any 

information apart from that one involved in ψ should not be used. State function for molecular system is a 

function of electronic and atomic coordinates and time ψ (х, X, t), where х - spatial and spin coordinates of 

electrons, Х - sets of nuclear coordinates, t - time. 

Electronic density ρ (r) is a fundamental characteristic measured in experiment on coherent dispersion of 

X-rays, which usually is carried out at definition of crystal structure. Namely from intensity of diffused x-ray 

radiation it is possible to obtain structural amplitudes, and their Fourier-transformation gives electronic 

density ρ (r). Distribution ED in a point r of elementary cell is described by equation 

       

h k l

кірhklFVr  2exp1
    (4.2.1) 

where V – volume of elementary cell,  - structural amplitude hklF 

    
J

JJ rhifhklF
2exp ,      (4.2.2) 

where fJ - atomic amplitude of dissipation of j atom in elementary cell and rj - its position. Components of 

vector h look like h/a, k/b, and l/c, where a, b and c – sizes of edges of elementary cell. It is 

experimentally found, that maxima meet positions of atomic nucleus and consequently, formula (4.2.1) 

may be used for definition of an arrangement of atoms in a crystal. Thus, a mathematical description of 

crystal structure brings to Fourier series, which represents a distribution of electronic density. Methods of 

overcoming of collateral problems appearing at such description (like thermal degradation of nucleus 

positions) are constantly improved and equality (4.2.1) finds a wide application for ρ (r) definition of the 

results of X-ray experiment on dispersion [86-89]. Stuart [90] derived a ratio, which allow to design maps 

of electro-statistic properties EP (and also a vector field of a gradient and Laplacian density associated 

with it) directly from experimentally found x-ray structures of amplitudes. 

The electronic density (r) is a physical value with some value in each point of space and 

representing a scalar field, defined in 3D space. Topological properties of this field are usually considered 

in terms of a number and type of its critical points. These points in which the first derivatives ρ (r) are zero, 

define positions of extrema ED (maxima, minima or saddle values). As ED is not arbitrary field, but the 

field, which kind is defined by forces acting on electronic density on the part of nucleus, its topological 

structure is a rather simple. This structure becomes more obvious and more easy is subjected to an 


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analysis while investigation of the vector of a gradient of electronic density associated with a field  (r). 

The image  (r) for a concrete molecule enables without any further mathematical analysis to visualize 

its atoms and some sets of lines connecting certain pairs of nucleus in a molecule – its molecular graph. 

Almost all molecular models (a model of spherical atom suggested by Bragg for modeling of crystal 

structures, more modern model of overlapped Van der Waals spheres and models of filling of spaces 

usually used by chemists for definition of molecules form and size) reflect a fact that ED has a maximum 

on a nucleus and falls down almost spherically at moving off this point. Even for not so complicated 

molecule ED may have maxima (and in fact, special points) in separately chosen plane and, hence, 

knowledge ρ (r) in one or two measurements it is not enough to characterize its form in 3D space. In 

conjunction with that a general method of exact description of basic topological features of distribution ED 

is required. This information is provided with values of curvature ρ (r) in its critical points [69, 76].  



Values of curvature in a critical point ρ can be found (as latent vectors and appropriate proper 

values) by diagonalization of Hessian matrix ρ (rс). Thus, a terms «curvature and proper value » and «axes 

of curvature and latent vectors » can be used as synonyms at description of properties of critical point ED. 

All proper values of Hessian matrix ρ in a critical point are real and can be also equal to zero. A rank of 

critical point designated ω is equal to a number of nonzero proper values (i.e. values of curvature ρ) in 

critical point. The attribute σ is simple algebraic sum of signs of proper values, i.e. signs of values of 

curvature ρ in critical point (let’s call it as attribute of a sign in a critical point or a signature). The critical 

point is characterized by these two sizes (ω, σ). Therefore, for example, a central critical point in ethylene 

with three nonzero values of curvature (one positive and two negative) is a critical point of type (3,—1). 

Behind a rather rare exception all critical points of distributions ED of molecules at energetically 

stable geometrical configurations of nucleus or near vicinities of those have a rank equal three. A fact of 

this prevalence of critical points with ω = 3 — general observation associated with features of topology of 

distribution ED in molecules. In terms of properties of critical points with ω = 3 elements of molecular 

structure are defined. A critical point with ω <3, i.e. at least with one zero curvature is called as 

degenerated. Such critical point is instable in a sense that a small change of ED caused by displacement 

of nucleus, results in its disappearance or bifurcation on a number of non-degenerate or stable (ω = 3) 

critical points. As a structure is characteristic in a sense that it (as it is or as a set of bonds) is kept in a 

certain range of configurations of nucleus, an observable rarity of non-degenerate critical points is not 

surprising. One may expect, that appearance of degenerated critical point ED of a molecule means the 

beginning of structural change. There are only four possible values of attribute σ at critical points of the 

third rank: 

(3,-3) All values of curvature are negative and ρ has a local maximum in rс. 
(3,-1) Two values of curvature are negative and ρ has a maximum in rс in a plane determined by 

corresponding axes. Along the third axis, perpendicular this plane, ρ has a minimum in rс. 
(3, +1) Two values of curvature are positive and ρ has a minimum in rс in a plane determined by 

corresponding axes. Along the third axis, perpendicular this plane, in a point rс ρ has a 

maximum. 

(3, +3) All values of curvature are positive and ρ has a local minimum in a point rс. 
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ED involves structural information, which is determining for the field of a vector of gradient 

associated with that. We noticed that unique local maxima in distribution of density of multi-electronic 

system meet positions of nucleus. This supervision provides a nucleus with a special role as attractor 

(points of attraction) in a field of vector of gradient ED. This identification (it reflects a main role of nuclear 

forces in definition of ρ) makes a basis for definition of atom and other elements of molecular structure. 

Besides it would be interesting on the basis of the analysis of vector field ED to express through its 

parameters the boundary conditions for a quantum subsystem. Thus, a vector field of gradient ED may be 

used both for quantum definition of subsystems, and for cartography of elements of cluster structure (that 

may enable to build a theory of atoms in clusters, considered as uniting structures). 

The vector field of gradient ED may be presented by an image of a trajectory, made by vector ρ. A 

trajectory ρ, called also as gradient line, begins in some arbitrary point r0 and is obtained by calculation 

ρ (r0) at displacement on distance Δr from this point in a direction, which specifies the vector ρ (r0). 

Procedure repeats until a line obtained in this way comes to an end. 

1. As the vector of gradient of scalar value specifies a direction of its biggest increase, the 

trajectories ρ are perpendicular to lines of constant density - contour lines ρ. 

2. Vector ρ (r) is directed on a tangent to a trajectory in each point r. 

3. Each trajectory should begin and/or come to an end in a point, where ρ (r) is equal to 

zero, i.e. in a critical point ρ. 

4. Trajectories cannot be crossed, as ρ (r) defines only one direction in each point r. 

The critical point of type (3,—3) describes a property point attractor of a vector field of gradient ED: there 

is an open vicinity of attractor B, which is invariant to a flow ρ so any trajectory starting in B, comes to an 

end in a point of attractor. The biggest vicinity satisfying these conditions is called as a pool of attractor. 

As critical points of type (3,-3) in multi-electron distribution ED meet mainly only the positions of 

nucleus, the last operate as attractors of field of a vector of gradient ρ (r, X). Thereof, a real space of 

molecular distribution ED can be divided into not crossed areas — pools, each of which contains one point 

either attractor or a nucleus. Free or bonded atom is defined as association of attractor and a pool 

associated with it. 

 At the same time the atom can be determined in terms of its boundaries. A pool of individual 

nuclear attractor in isolated atom covers full 3D space R3. For atom in cluster the nuclear pool is open 

subset R3. It is separated from the pools of neibouring atoms by interatomic surfaces. The existence of 

interatomic surface SAB means a presence of critical point of type (3,-1) between the neibouring nucleus A 

and B.  

The presence of critical point of type (3,-1) and the line of atomic interaction associated with it 

specify that ED is accumulated between nucleuses bonding those. In this point the line of atomic 

interaction crosses interatomic surface and electrons thus are collected between nucleuses along this line. 

Both the theory and the observable facts confirm that accumulation of ED between pair of nucleuses is a 

required condition of bonding of one atom with another. The same condition becomes sufficient when 

inter-nucleus forces are balanced and the system is characterized by geometry with minimum equilibrium 

energy. Thus, the presence of a line of atomic interaction in this equilibrium geometry satisfies both 
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required and sufficient conditions of bonding of atoms with each other. The line of maximum ED bonding 

nucleuses is called as communication line, a critical point of type (3,—1) — a critical point of 

communication [93]. 

For given nuclear configuration X molecular graph is defined as closed set of lines or lines of atomic 

interaction. Molecular graph is represented by a set of communication lines of connecting pairs of 

neibouring nuclear attractors. This graph allocates pair interactions presented in ensemble of atoms which 

mainly characterize system properties as well as conditions of its balance or change. 

Molecular graph here is a direct consequence of the main topological properties of ED distribution of 

system: local maxima — critical points of type (3,-3) — are observed in positions of nucleus, defining 

atoms, and critical points of type (3,-1) bond (but not all) pairs of nucleus in cluster. Set of the 

communication lines obtained thus as appeared, coincides with a set of bonded pairs of atoms, which may 

be suggested on the basis of chemical reasons. To representation of chemical structure as the set of 

communication lines one managed to come by generalization of data about combination of chemical 

elements and models of their bonding. In particular, it concerns a model of chemical valency, which 

asserts that ability of given type of atom to formation of bonds (valency) can be saturated and be defined 

by a number of valent electrons. For definition of any chemical structure it is necessary to have a lot of 

data about it and accordingly the same information successfully and briefly is expressed by these 

structures. Demonstration that molecular structure can be precisely presented by molecular graph 

provides with new information, namely, that nucleuses formally united by valent strokes in structure are 

turned to be incorporated in space by communication lines along which there occurs a maximum 

accumulation of electronic density which by itself represents an original chemical "glue". 

A number and type of critical points, which can coexist in system with final number of nucleus are 

obeyed to Puankare - Hopf ratio. In view of the mentioned interrelation between type of critical point 

and element of molecular structure, this ratio is formulated as follows: 

n – b + r - c=1       (4.2.3) 

where: n — number of nucleuses, b — number of communication lines (or lines of atomic interaction), r —

number of cycles, and с — number of cells [91]. A set of numbers (n,b,r,с) is characteristic for each 

cluster. 

Being based on above said and involving preliminary results obtained by our colleagues – 

crystallographers (who have yet to consider these complicated systems, but for more simple systems have 

interesting results) in a solution of a problem of cluster designing of ceramic composites of system LaB6-

MeB2 (and systems close to it) we are about to move this way. All clusters are formed from a base 

package of clusters, which contains (2 dimensions) - regular polygons (3D) -regular (or Archimedean) 

polyhedrons. Thus each cluster has a "solid" nucleus and a "soft" jacket. 
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Base clusters are bonded with chemical composition of "islands" in a bouillon of melt, which crystallizes. 

This bouillon involves both separate atoms (monomers) and linear formations (dimers). The first problem 

is to learn how to build it base clusters for real substances and especially for those systems, which are of 

our interest:  LaB6-MeB2 etc. 

At once let’s define what is what? The center of cluster – is its center of mass. Lengths of sides are 

associated with interatomic distances. The solid nucleus "is associated" with ionic skeleton, and a soft 

jacket with valent electrons. What is this relationship let’s formulate proceeding from the rules of this game 

in which we are going to play. Meanwhile we see two games. The first is «make a carpet » and the second 

- «solidify a bouillon». Moreover it is necessary to remember, that corners both in base clusters and in 

mosaics are bonded by valent angles. 

Essence of the game «make a carpet»: Let’s build N1, N2, N3, …..Nm base clusters proceeding from 

concentration of chemical elements and kinds of their stable compounds (alloy state diagram). 

Further, combining base clusters by selection let’s stick together those on sides of identical length (with a 

tolerance for a soft jacket) in a mosaic carpet filling a plane (space). It is necessary to think over the rules 

of sticking but it is another (special) problem. We also have to think over a number of checks of viability of 

formed clusters on each step of building (physics and chemistry). At the certain rules this "carpet" may 

have holes (porosity).  

Essence of the game «solidify a bouillon»: let’s have a tank with set law of heat removal where we 

have atoms, diners, clusters given by certain distribution associated with concentration of components. 

Initial temperature Т0 sets a distribution of speeds of participants of events. We set rules of interaction of 
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bouillon elements at impact (when they stick together, when they have an elastic impact, etc.) and we 

include a heat removal as well. Clusters start to grow and to slow down. Gel solidifies and forms (single 

crystal, polycrystal, amorphous body, quasicrystal...) and all this depending on the rules which we set. 

Here too should be a set of checks (physics, chemistry), which will exclude impractical exotic. Here is a 

field of work for molecular dynamics of mesoparticles. Fortunately we always know the center of mass of 

current cluster and its characteristics. 
In this game it is possible to implement a transition of amorphous body in crystal. Most likely, it is a 

bouillon with rather high concentration of clusters with rather big sizes. 

This game first of all should clarify an initial stage of crystallization process: monomers → dimmer → 

cluster and further (through interaction of clusters) → consolidated substance (amorphous body, 

quasicrystal, crystal, etc.). 

Problems: 1. Computer design: а) regular polygons with jackets of set thickness; b) regular (and 

Archimedean) polyhedrons with jackets of set thickness. 
 2. to build (а) plane, b) volumetric) lattices of investigated systems LaB6-MeB2 and to allocate 

variants of base clusters with well defined torn off bonds in those.  

 3. to develop variants of rules of (а) sticking b) impacts of base clusters, being based on physical 

and chemical properties of these processes (molecular dynamics and chemical reactions) 

 4. to develop potentials of interaction among clusters – mesoparticles built in item 2. 

 5. to pick up variants of molecular dynamics for realization of the game «solidify a bouillon». 

 

Solution of these problems at the moment of contract accomplishment is an intermediate state, 

which as we believe, should not be discussed as of yet. The obtained results will be employed for further 

work and would be accounted by means of shortening of time for appropriate stages in working schedule 

of the next contract. 
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5. Conclusions 
Macroscale 
1. The simplest model of directed solidification process for boride composites MeB6-MeB2 based on 

sample’s mass and energy conservation laws brings to a conclusion that in the mode of low crystallization 

rates 0,5 mm/min < v < 4 mm/min diameter of fiber of reinforcing component MeB2 increases with a growth 

of crystallization rate, that points out a difference in crystallization mechanisms for the investigated 

materials depending on ultimate value (v ~ 5 mm/min) of pulling rate. 

2. Equations of steady-state diffusion describe fields of concentration of materials of matrix and 

reinforcing phase in melt up to crystallization front with rather good accuracy. 

3. Crystallization occurs in a very narrow zone close to crystallization front and its width essentially 

decreases with a growth of pulling rate. 

4. Apparatus to resolve a problem of heat transfer with moving boundary caused by change of 

substance aggregate state, that further would enable to apply it for solution of definite problems realizing 

the technology of directed solidification for eutectic systems LaB6-MeB2 has been developed.  

5. Asymptotic method of Bahvalov-Sanches-Palensia enabled to calculate elastic constants and 

fields of thermo-deformation for both real eutectic systems LaB6-MeB2 and hypothetic nanocomposites of 

these systems with different volume share of nanotubular reinforcing whiskers. For macrocomposites the 

results obtained are in a good agreement with experimental ones, and for nanocomposites the predicted 

characteristics are very attractive, that makes a problem of modification of DSEC technology actual for 

nanotubular whiskers. 

Mesoscale 
1. The methodology of definition of multifractal characteristics of materials structure has been 

prepared on the base of analysis of images obtained by SPM. 

2. A number of compulsory requirements for preparation of a package of analyzed images to 

elevate the adequacy of definition of structure dependent properties of the investigated composites has 

been developed. 

 Microscale 
1. Being based on quantum-mechanical approach (the method of a priori pseudopotential), values 

of temperature and concentration of components in eutectic point for the system LaB6-MeB2 were for the 

first time, theoretically obtained. The results obtained are in a good agreement with experimental data. 

2. Apparatus and algorithm of cluster designing of bimonocrystals in systems LaB6-MeB2 have 

been developed. Realization of this algorithm requires rather a big volume of further additional 

investigations. 
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6. Closing 
 

The results submitted in this report have two scientifically important components. The first is – 

fragments of accomplished parts of investigations targeted on realization of project’s objective. They were 

reflected both in the report and open Russian and English periodicals [65-66], [85-99]. The second 

component is – the groundwork, which may serve a solid background for further investigation. They are 

based on the analysis of existing publications (mainly those concerning other more simple systems) the 

experience gained in discussions with specialists from allied fields of knowledge and a very big volume of 

numerical testing experiment. Summary of this component is very schematic and leaves in a shadow (and 

in many cases failures) difficulties of adaptation of the existing models of more simple systems for the 

investigated system LaB6-MeB2 and testing of the suggested models. A big problem was also to obtain 

reliable experimental data required for numerical experiments. However all these questions during the 

contract performance have been regularly discussed Dr. Ali Sayir, scientific coordinator of this project, and 

they always have (as a result of these discussions) constructiveness defining both further direction of 

research activity of this project and formulation of content and volume of those problems, which would be 

enclosed in the follow-up projects. 

Project team hope that these final report would be interesting and useful for colleagues involved in 

DSEC issues and properties of composites obtained by directed solidification. 
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